Page 363 - Hardware Implementation of Finite-Field Arithmetic
P. 363

φ(n), 6, 7                    algorithm (Cont.):
                                               Montgomery exponentiation
                    A A                         LSB-first, 85
               adders, carry-save, 29           MSB-first, 83
               adder-subtractor, 64            Montgomery product, 77, 78
               affine point, 295               Montgomery reduction, 77
               algorithm                       n-digit to (k + t)-digit reduction, 44
                 τ-ary representation, 301     nonrestoring  division, 94
                                                         k
                 Barrett reduction, 46         normal basis 2 -ary exponentiation,
                 digit recurrence carry save      253, 254
                    reduction, 30              normal basis binary exponentiation,
                 digit recurrence reduction, 27   250
                 division, Fermat’s theorem, 110  normal basis inversion, 255
                 double, add, and reduce, 71, 73  normal basis Itoh-Tsujii inversion,
                 dual basis inversion for GF(2 ), 276  258
                                     4
                 dual basis multiplication, 272  normal basis m-ary exponentiation,
                                        8
                 dual basis multiplication for GF(2 ),  253
                    274                        normal basis Massey-Omura
                                                                  4
                 inversion for GF(2 ), 279        multiplication for GF(2 ), 240
                             m
                     k
                 mod 2 − a reduction, 35, 36   normal basis multiplication, 245,
                 mod f(x) division, binary algorithm,   246
                    149, 151                   normal basis squaring, 238
                 mod f(x) division, Euclidean   OEF binary exponentiation,
                    algorithm, 141, 142, 143      135
                 mod f(x) division, multiplications   OEF LSE-first multiplier, 135
                           m
                    over GF(p ) and inversion over   OEF MSE-first multiplier, 135
                    Z , 154                    OEF multiplication, 134
                     p
                 mod f(x) division, optimal extension   optimal normal basis multiplication,
                    field, 157, 158               Type-I, 260, 261
                 mod m addition, 61, 62        point addition, 291
                 mod m exponentiation, LSB-first, 85  point multiplication, 293
                                                    163
                 mod m exponentiation, MSB-first,   GF(2 ), 307
                    82                          Montgomery algorithm, 297
                 mod m subtraction, 63          τ-ary representation, 302, 303
                 mod p division, binary algorithm,   polynomial basis binary algorithm,
                    101                           204
                 mod p division, Euclidean     polynomial basis binary
                    algorithm, 92                 exponentiation, 196
                 mod p division, plus-minus    polynomial basis classic
                    algorithm, 106                multiplication, 167
                                                                      343
   358   359   360   361   362   363   364   365   366   367