Page 160 - High Power Laser Handbook
P. 160

128   Diode Lasers                             Semiconductor Laser Diodes    129


                      sizes are needed to prove such low failure rates. The high expense of
                      module  life  testing  (e.g.,  capital  equipment)  necessitates  judicious
                      leveraging of common platform design and process reliability data.
                      Unlike sudden, or “hard,” chip failures, coupling stability is “soft,”
                      with a failure rate that gradually increases over time (β > 1); hence,
                      field-failure statistics normally lead to an optimistic portrayal of the
                      true  coupling  failure  rate  as  specified  (e.g.,  by  end-of-life  ≥  10%
                      change in current or power), because field failures may go unnoticed
                      or may not be reported in the early phase of deployment.


                 References
                       1.  Alferov,  Z.  I.,  “Double  Heterostructure  Lasers:  Early  Days  and  Future
                         Perspectives,” IEEE J. Sel. Top. Quant. Electron., 6: 832–840, 2000.
                       2.  Jacobs, R. R., and Scifres, D. R., “Recollections on the Founding of Spectra
                         Diode Labs, Inc. (SDL, Inc.),” IEEE J. Sel. Top. Quant. Electron., 6: 1228–1230,
                         2000.
                       3.  Welch, D. F., “A Brief History of High-Power Semiconductor Lasers,” IEEE
                         J. Sel. Top. Quant. Electron., 6: 1470–1477, 2000.
                       4.  Harder, C., Buchmann, P., and Meier, H., “High-Power Ridge-Waveguide
                         AlGaAs GRIN-SCH Laser Diode,” Electron. Lett., 22: 1081–1082, 1986.
                       5.  Dyment, J. C., “Hermite-Gaussian Mode Patterns in GaAs Junction Lasers,”
                         Appl. Phys. Lett., 10: 84–86, 1967.
                       6.  Dyment, J. D., D’Asaro, L. A., North, J. C., Miller, B. I., and Ripper, J. E., “Proton-
                         Bombardment Formation of Stripe Geometry Heterostructure Lasers for 300 K
                         CW Operation,” Proc. IEEE, 60: 726–728, 1972.
                       7.  Kaminow, I. P., Nahozy, R. E., Pollack, M. A., Stulz, L. W., and Dewinter, J. C.,
                         “Single-Mode CW Ridge-Waveguide Laser Emitting at 1.55 mm,” Electron. Lett.,
                         15: 763–765, 1979.
                       8.  Tsukuda,  T.,  “GaAs-Ga Al As  Buried  Heterostructure  Injection  Lasers,”
                                          1-x
                                              x
                         J. Appl. Phys., 45: 4899–4906, 1974.
                       9.  Berishev, I., Komissarow, A., Mozhegov, N., Trubenko, P., Wright, L., Berezin,
                         A.,  Todorov,  S.,  and  Ovtchinnikov,  A.,  “AlGaInAs/GaAs  Record  High-
                         Power Conversion Efficiency and Record High Brightness Coolerless 915-nm
                         Multimode Pumps,” Proc. SPIE, 5738: 25–32, 2005.
                      10.  Botez, D., “Design Considerations and Analytical Approximations for High
                         Continuous-Wave Power, Broad Waveguide Diode Lasers,” Appl. Phys. Lett.,
                         74: 3102–3104, 1999.
                      11.  Oosenburg,  A.,  “Reliability  Aspects  of  980-nm  Pump  Lasers  in  EDFA
                         Applications,” Proc. SPIE, 3284: 20–27, 1998.
                      12.  Ressel, P., Ebert, G., Zeimer, U., Hasler, K., Beister, G., Sumpf, B., Klehr, A., and
                         Tränkle, G., “Novel Passivation Process for the Mirror Facets of Al-Free Active-
                         Region High-Power Semiconductor Diode Lasers,” IEEE Photonics Technol.
                         Lett., 17: 962–964, 2005.
                      13.  Kawazu, Z., Tashiro, Y., Shima, A., Suzuki, D., Nishiguchi, H., Yagi, T., and
                         Omura, E., “Over 200-mW Operation of Single-Lateral Mode 780-nm Laser
                         Diodes with Window-Mirror Structure,” IEEE J. Sel. Top. Quant. Electron., 7:
                         184–187, 2001.
                      14.  Petrescu-Prahova,  I.  D.,  Modak,  P.,  Goutain,  E.,  Silan,  D.,  Bambrick,  D.,
                         Riordan, J., Moritz, T., McDougall, S. D., Qiu, B., and Marsh, J. H., “High d/
                         gamma Values in Diode Laser Structures for Very High Power,” Proc. SPIE,
                         7198: 71981I-1–71981I-8, 2009.
                      15.  Garbuzov, D. Z., Abeles, J. H., Morris, N. A., Gardner, P. D., Triano, A. R.,
                         Harvey,  M.  G.,  Gilbert,  D.  B.,  and  Connoly,  J.  C.,  “High-Power  Separate-
                         Confinement Heterostructure AlGaAs/GaAs Laser Diodes with Broadened
                         Waveguide,” Proc. SPIE, 2682: 20–26, 1996.
   155   156   157   158   159   160   161   162   163   164   165