Page 160 - High Power Laser Handbook
P. 160
128 Diode Lasers Semiconductor Laser Diodes 129
sizes are needed to prove such low failure rates. The high expense of
module life testing (e.g., capital equipment) necessitates judicious
leveraging of common platform design and process reliability data.
Unlike sudden, or “hard,” chip failures, coupling stability is “soft,”
with a failure rate that gradually increases over time (β > 1); hence,
field-failure statistics normally lead to an optimistic portrayal of the
true coupling failure rate as specified (e.g., by end-of-life ≥ 10%
change in current or power), because field failures may go unnoticed
or may not be reported in the early phase of deployment.
References
1. Alferov, Z. I., “Double Heterostructure Lasers: Early Days and Future
Perspectives,” IEEE J. Sel. Top. Quant. Electron., 6: 832–840, 2000.
2. Jacobs, R. R., and Scifres, D. R., “Recollections on the Founding of Spectra
Diode Labs, Inc. (SDL, Inc.),” IEEE J. Sel. Top. Quant. Electron., 6: 1228–1230,
2000.
3. Welch, D. F., “A Brief History of High-Power Semiconductor Lasers,” IEEE
J. Sel. Top. Quant. Electron., 6: 1470–1477, 2000.
4. Harder, C., Buchmann, P., and Meier, H., “High-Power Ridge-Waveguide
AlGaAs GRIN-SCH Laser Diode,” Electron. Lett., 22: 1081–1082, 1986.
5. Dyment, J. C., “Hermite-Gaussian Mode Patterns in GaAs Junction Lasers,”
Appl. Phys. Lett., 10: 84–86, 1967.
6. Dyment, J. D., D’Asaro, L. A., North, J. C., Miller, B. I., and Ripper, J. E., “Proton-
Bombardment Formation of Stripe Geometry Heterostructure Lasers for 300 K
CW Operation,” Proc. IEEE, 60: 726–728, 1972.
7. Kaminow, I. P., Nahozy, R. E., Pollack, M. A., Stulz, L. W., and Dewinter, J. C.,
“Single-Mode CW Ridge-Waveguide Laser Emitting at 1.55 mm,” Electron. Lett.,
15: 763–765, 1979.
8. Tsukuda, T., “GaAs-Ga Al As Buried Heterostructure Injection Lasers,”
1-x
x
J. Appl. Phys., 45: 4899–4906, 1974.
9. Berishev, I., Komissarow, A., Mozhegov, N., Trubenko, P., Wright, L., Berezin,
A., Todorov, S., and Ovtchinnikov, A., “AlGaInAs/GaAs Record High-
Power Conversion Efficiency and Record High Brightness Coolerless 915-nm
Multimode Pumps,” Proc. SPIE, 5738: 25–32, 2005.
10. Botez, D., “Design Considerations and Analytical Approximations for High
Continuous-Wave Power, Broad Waveguide Diode Lasers,” Appl. Phys. Lett.,
74: 3102–3104, 1999.
11. Oosenburg, A., “Reliability Aspects of 980-nm Pump Lasers in EDFA
Applications,” Proc. SPIE, 3284: 20–27, 1998.
12. Ressel, P., Ebert, G., Zeimer, U., Hasler, K., Beister, G., Sumpf, B., Klehr, A., and
Tränkle, G., “Novel Passivation Process for the Mirror Facets of Al-Free Active-
Region High-Power Semiconductor Diode Lasers,” IEEE Photonics Technol.
Lett., 17: 962–964, 2005.
13. Kawazu, Z., Tashiro, Y., Shima, A., Suzuki, D., Nishiguchi, H., Yagi, T., and
Omura, E., “Over 200-mW Operation of Single-Lateral Mode 780-nm Laser
Diodes with Window-Mirror Structure,” IEEE J. Sel. Top. Quant. Electron., 7:
184–187, 2001.
14. Petrescu-Prahova, I. D., Modak, P., Goutain, E., Silan, D., Bambrick, D.,
Riordan, J., Moritz, T., McDougall, S. D., Qiu, B., and Marsh, J. H., “High d/
gamma Values in Diode Laser Structures for Very High Power,” Proc. SPIE,
7198: 71981I-1–71981I-8, 2009.
15. Garbuzov, D. Z., Abeles, J. H., Morris, N. A., Gardner, P. D., Triano, A. R.,
Harvey, M. G., Gilbert, D. B., and Connoly, J. C., “High-Power Separate-
Confinement Heterostructure AlGaAs/GaAs Laser Diodes with Broadened
Waveguide,” Proc. SPIE, 2682: 20–26, 1996.