Page 355 - High Power Laser Handbook
P. 355

324    So l i d - S t at e   La s e r s                                                                                  Ultrafast Solid-State Lasers     325


                      for  ultrahigh-resolution  biological  and  materials  imaging. 55,56   The
                      water window region of the soft x-ray spectrum is of particular inter-
                      est because of the high absorption contrast between (relatively trans-
                      parent) water and (opaque) carbon, as well as the presence of many
                      absorption edges throughout the soft-x-ray region of the spectrum.
                      Several soft x-ray microscopes have been implemented at synchro-
                      tron  facilities  worldwide  and  have  provided  new  capabilities  for
                      biology—for example, in three-dimensional tomographic imaging of
                      single cells.



                 References
                        1.  Moulton, P. F., “Spectroscopic and Laser Characteristics of Ti:Al O ,” J. Opt.
                                                                       2
                                                                         3
                         Soc. Am. B, 3(1): 125–133, 1986.
                        2.  Taft, G., et al., “Measurement of 10-fs Laser Pulses.” IEEE J. Select Topics Quant.
                         Electron., 2(3): 575–585, 1996.
                        3.  Tien, A. C., et al., “Short-Pulse Laser Damage in Transparent Materials as a
                         Function of Pulse Duration,” Phys. Rev. Lett., 82(19): 3883–3886, 1999.
                        4.  Perry, M. D., and Mourou, G., “Terawatt to Petawatt Subpicosecond Lasers,”
                         Science, 264: 917–923, 1994.
                        5.  Perry, M. D., et al., “Petawatt Laser Pulses,” Opt. Lett., 24(3): 160–162, 1999.
                        6.  Pennington, D. M., et al., “Petawatt Laser System and Experiments,” IEEE J.
                         Select Topics Quant. Electron., 6(4): 676–688, 1994.
                        7.  Roeske,  F.,  et  al.,  “Cutting  and  Machining  Energetic  Materials  with  a
                         Femtosecond Laser,” Propellants Explosives Pyrotechnics, 28(2): 53–57, 2003.
                        8.  Juhasz, T., et al., “Corneal Refractive Surgery with Femtosecond Lasers,” IEEE
                         J. Select Topics Quant. Electron., 5(4): 902–910, 1999.
                        9.  Roth, P. W., et al., “Directly Diode-Laser-Pumped Ti:sapphire Laser,” Opt. Lett.,
                         34(21): 3334–3336, 2009.
                      10.  Keller, U., et al., “Semiconductor Saturable Absorber Mirrors (SESAMS) for
                         Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers,” IEEE J.
                         Select Topics Quant. Electron., 2: 435–453, 1996.
                      11.  Spence, D. E., et al., “Regeneratively Initiated Self-Mode-Locked Ti:sapphire
                         Laser,” Opt. Lett., 16(22): 1762–1764, 1991.
                      12.  Asaki, M. T., et al., “Generation of 11-fs Pulses from a Modelocked Ti:sapphire
                         Laser,” Opt. Lett., 18: 977, 1993.
                      13.  Sharma, T. K., and Towe, E., “Application-Oriented Nitride Substrates: The
                         Key to Long-Wavelength Nitride Lasers Beyond 500 nm,” J. App. Phys., 107(2):
                         2010.
                      14.  Hunziker, L. E., Ihli, C., and Steingrube, D. S., “Miniaturization and Power
                         Scaling of Fundamental Mode Optically Pumped Semiconductor Lasers,” IEEE
                         J. Select Topics Quant. Electron., 13(3): 610–618, 2007.
                      15.  IPG  Photonics.  http://www.ipgphotonics.com/Collateral/Documents/
                         EnglishUS/Green_CW_Fiber_Laser_IPG%20web.pdf.
                      16.  Strickland, D., and Mourou, G., “Compression of Amplified Chirped Optical
                         Pulses,” Opt. Comm., 56(3): 219–221.
                      17.  Backus, S., et al., “High Power Ultrafast Lasers,” Review of Scientific Instruments,
                         69 (3): 1207–1223, 1998.
                      18.  Martinez,  O.  E.,  “Design  of  High-Power  Ultrashort  Pulse  Amplifiers  by
                         Expansion and Recompression,” IEEE J. Quant. Electron., QE-23(8): 1385–1387,
                         1987.
                      19.  Treacy, E. B., “Optical Pulse Compression with Diffraction Gratings,” IEEE J.
                         Quant. Electron., QE-5(9): 454–458, 1969.
                      20.  Muller, D., et al., “Cryogenic Cooling Multiplies Output of Ti:sapphire Output,”
                         Laser Focus World, 41(10): 65–68, 2005.
   350   351   352   353   354   355   356   357   358   359   360