Page 355 - High Power Laser Handbook
P. 355
324 So l i d - S t at e La s e r s Ultrafast Solid-State Lasers 325
for ultrahigh-resolution biological and materials imaging. 55,56 The
water window region of the soft x-ray spectrum is of particular inter-
est because of the high absorption contrast between (relatively trans-
parent) water and (opaque) carbon, as well as the presence of many
absorption edges throughout the soft-x-ray region of the spectrum.
Several soft x-ray microscopes have been implemented at synchro-
tron facilities worldwide and have provided new capabilities for
biology—for example, in three-dimensional tomographic imaging of
single cells.
References
1. Moulton, P. F., “Spectroscopic and Laser Characteristics of Ti:Al O ,” J. Opt.
2
3
Soc. Am. B, 3(1): 125–133, 1986.
2. Taft, G., et al., “Measurement of 10-fs Laser Pulses.” IEEE J. Select Topics Quant.
Electron., 2(3): 575–585, 1996.
3. Tien, A. C., et al., “Short-Pulse Laser Damage in Transparent Materials as a
Function of Pulse Duration,” Phys. Rev. Lett., 82(19): 3883–3886, 1999.
4. Perry, M. D., and Mourou, G., “Terawatt to Petawatt Subpicosecond Lasers,”
Science, 264: 917–923, 1994.
5. Perry, M. D., et al., “Petawatt Laser Pulses,” Opt. Lett., 24(3): 160–162, 1999.
6. Pennington, D. M., et al., “Petawatt Laser System and Experiments,” IEEE J.
Select Topics Quant. Electron., 6(4): 676–688, 1994.
7. Roeske, F., et al., “Cutting and Machining Energetic Materials with a
Femtosecond Laser,” Propellants Explosives Pyrotechnics, 28(2): 53–57, 2003.
8. Juhasz, T., et al., “Corneal Refractive Surgery with Femtosecond Lasers,” IEEE
J. Select Topics Quant. Electron., 5(4): 902–910, 1999.
9. Roth, P. W., et al., “Directly Diode-Laser-Pumped Ti:sapphire Laser,” Opt. Lett.,
34(21): 3334–3336, 2009.
10. Keller, U., et al., “Semiconductor Saturable Absorber Mirrors (SESAMS) for
Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers,” IEEE J.
Select Topics Quant. Electron., 2: 435–453, 1996.
11. Spence, D. E., et al., “Regeneratively Initiated Self-Mode-Locked Ti:sapphire
Laser,” Opt. Lett., 16(22): 1762–1764, 1991.
12. Asaki, M. T., et al., “Generation of 11-fs Pulses from a Modelocked Ti:sapphire
Laser,” Opt. Lett., 18: 977, 1993.
13. Sharma, T. K., and Towe, E., “Application-Oriented Nitride Substrates: The
Key to Long-Wavelength Nitride Lasers Beyond 500 nm,” J. App. Phys., 107(2):
2010.
14. Hunziker, L. E., Ihli, C., and Steingrube, D. S., “Miniaturization and Power
Scaling of Fundamental Mode Optically Pumped Semiconductor Lasers,” IEEE
J. Select Topics Quant. Electron., 13(3): 610–618, 2007.
15. IPG Photonics. http://www.ipgphotonics.com/Collateral/Documents/
EnglishUS/Green_CW_Fiber_Laser_IPG%20web.pdf.
16. Strickland, D., and Mourou, G., “Compression of Amplified Chirped Optical
Pulses,” Opt. Comm., 56(3): 219–221.
17. Backus, S., et al., “High Power Ultrafast Lasers,” Review of Scientific Instruments,
69 (3): 1207–1223, 1998.
18. Martinez, O. E., “Design of High-Power Ultrashort Pulse Amplifiers by
Expansion and Recompression,” IEEE J. Quant. Electron., QE-23(8): 1385–1387,
1987.
19. Treacy, E. B., “Optical Pulse Compression with Diffraction Gratings,” IEEE J.
Quant. Electron., QE-5(9): 454–458, 1969.
20. Muller, D., et al., “Cryogenic Cooling Multiplies Output of Ti:sapphire Output,”
Laser Focus World, 41(10): 65–68, 2005.