Page 356 - High Power Laser Handbook
P. 356
324 So l i d - S t at e La s e r s Ultrafast Solid-State Lasers 325
21. Pessot, M., et al., “Chirped-Pulse Amplification of 100-fs Pulses,” Opt. Lett.,
14(15): 797–799, 1989.
22. Huang, C.-P., et al. “Amplification of 26 fs, 2 TW Pulses in Ti:sapphire,”
Generation, Amplification and Measurement of Ultrashort Laser Pulses II. San Jose,
CA: SPIE, 1995.
23. Yamakawa, K., et al., “Generation of 16 fs, 10 TW Pulses at a 10 Hz Repetition
Rate with Efficient Ti:sapphire Amplifiers,” Opt. Lett., 23(7): 525–527, 1998.
24. Backus, S., et al., “Ti:Sapphire Amplifier Producing Millijoule-Level, 21 fs
Pulses at 1 kHz,” Opt. Lett., 20(19): 2000, 1995.
25. Zeek, E., et al., “Adaptive Pulse Compression for Transform-Limited 15-fs
High-Energy Pulse Generation,” Opt. Lett., 25(8): 587–589, 2000.
26. Spielmann, C., et al., “Compact, High-Throughput Expansion–Compression
Scheme for Chirped Pulse Amplification in the 10 Fs Range,” Opt. Comm.,
120(5–6): 321–324, 1995.
27. Lenzner, M., et al., “Sub-20 fs, Kilohertz-Repetition-Rate Ti:sapphire Amplifier,”
Opt. Lett., 20(12): 1397, 1995.
28. Kane, S., and Squier, J., “Grism-Pair Stretcher-Compressor System for
Simultaneous Second- and Third-Order Dispersion Compensation in Chirped
Pulse Amplification,” J. Opt. Soc. Am. B, 14(3): 661–665, 1997.
29. Durfee, C. G., Squier, J. A., and Kane, S., “A Modular Approach to the Analytic
Calculation of Spectral Phase for Grisms and Other Refractive/Diffractive
Structures,” Opt. Express, 16(22): 18004–18016, 2008.
30. Backus, S., “100 kHz Ultrafast Laser System for OPA/NOPA Frequency
Conversion,” ASSP 2008 Proceedings. Japan: 2008.
31. Gaudiosi, D., et al., “Multi-Kilohertz Repetition Rate Ti:sapphire Amplifier
Based on Down-Chirped Pulse Amplification,” Opt. Express, 14(20): 9277–9283,
2006.
32. Koechner, W., Solid-State Laser Engineering, Heidelberg, Germany: Springer-
Verlag, 1996.
33. Matousek, P., Rus, B., and Ross, I. N., “Design of a Multi-Petawatt Optical
Parametric Chirped Pulse Amplifier for the Iodine Laser ASTERIX IV,” IEEE
J. Quant. Electron., 36(2): 158–163, 2000.
34. Chalus, O., et al., “Mid-IR Short-Pulse OPCPA with Microjoule Energy at
100 kHz,” Opt. Express, 17(5): 3587–3594, 2009.
35. Gaul, E. W., et al., “Demonstration of a 1.1 Petawatt Laser Based on a Hybrid
Optical Parametric Chirped Pulse Amplification/Mixed Nd:glass Amplifier,”
Appl. Opt., 49(9): 1676–1681, 2010.
36. Braun, A., et al., “Characterization of Short-Pulse Oscillators by Means of a
High-Dynamic-Range Autocorrelation Measurement,” Opt. Lett., 20(18): 1889–
1891, 1995.
37. Trebino, R., et al., “Measuring Ultrashort Laser Pulses in the Time-Frequency
Domain Using Frequency-Resolved Optical Gating,” Rev. Sci. Instrum., 68(9):
3277–3295, 1997.
38. O’Shea, P., Kimmel, M., and Trebino, R., “Increased Phase-Matching Bandwidth
in Simple Ultrashort-Laser-Pulse Measurements,” J. Opt. B: Quant. Semiclassical
Opt., 4(1): 44–48, 2002.
39. Iaconis, C., and Walmsley, I. A., “Spectral Phase Interferometry for Direct
Electric-Field Reconstruction of Ultrashort Optical Pulses,” Opt. Lett., 23(10):
792–794, 1998.
40. Kasparian, J., Sauerbrey, R., and Chin, S. L., “The Critical Laser Intensity of
Self-Guided Light Filaments in Air,” Appl. Phys. B: Lasers Opt., 71(6): 877–879,
2000.
41. Kasparian, J., et al., “White-Light Filaments for Atmospheric Analysis,” Science,
301(5629): 61–64, 2003.
42. Mejean, G., et al., “Remote Detection and Identification of Biological Aerosols
Using a Femtosecond Terawatt Lidar System,” Appl. Phys. B: Lasers Opt., 78(5):
535–537, 2004.
43. Tien, A., et al., “Short Pulse Laser Damage in Transparent Materials as a
Function of Laser Pulse Duration,” Phys. Rev. Lett., 82: 3883–3886, 1999.