Page 213 - High Temperature Solid Oxide Fuel Cells Fundamentals, Design and Applications
P. 213

190  High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications

         major challenges: reduction of fabrication costs and reduction of material costs.
         The reduction in material costs can be achieved by both the interconnection
         design  and  the  quantity  of  interconnect  required.  However,  reduction  in
         fabrication  costs  will  only  come with  improved  processing  and automation
         [ 1,3 1,32,63].
           Lanthanum  chromite has provided  long  lifetimes, as long  as 69,000 h  in
         Siemens  Westinghouse  tubular  cells,  at  900-1000°C.  However,  metallic
         interconnects  have  not  yet  shown  equivalent  lifetime  performance.
         Improvements in metallic interconnect compositions and contact layers between
         cells/interconnects are still issues for materials development. In particular, the
         metal/ceramic  interface  in  cells  should  have  low  corrosion,  low  contact
         resistance and low permeability of chromium species. Recent results have shown
         that optimised steels for SOFC applications are available and alkaline earth-free
         and cobalt-containing perovskites are the most suitable materials for contact
         layers:  however,  their  long-term  performance  under  fuel  cell  operation
         conditions needs to be proven.



         References
               N.  Q.  Minh and T. Takahashi, in Science and Technology of  Ceramic Fuel
               Cells, Elsevier, Amsterdam, 1995.
               D.P.KarimandA.T. Aldred,Phys.Rev. B, 20(1979) 2255.
               B. F. Flandermeyer, M. M. Nasrallah, D. M. Sparlin and H. U. Anderson,
               High Temp. Sci.,  20 (1985) 259.
               W. J. Weber, C. W. Griffin and J. L. Bates, J. Arner. Ceram. SOC., 70 (1987)
               265.
               I.  Yasuda  and  T.  Hikita,  in  Solid  Oxide  Fuel  Cells  11, eds.  F.  Grosz,
               P. Zegers, S. C. Singhal and 0. Yamamoto, Commission of  the European
               Communities, Luxembourg, 1991,  p. 632.
               R. Koc andH. U. Anderson,]. Mater. Sci., 27 (1992) 5477.
               G. F. Carini 11, H. U. Anderson, D. M. Sparlin and M. M. Nasrallah, Solid
               StateIonics, 49 (1991) 233.
               H. U. Anderson, C. C.  Chen, L-W. Tai and M. M. Nasrallah, in Proc. 2nd
               Int. Symp. Ionic and Mixed Conducting Oxides, eds. T. A. Ramanarayanan,
               H. L. Tuller and W. L. Worrell, The Electrochemical Society Proceedings,
               Pennington, NJ, PV94-12,1994, p. 3 76.
               H.  Yokokawa, T.  Horita, N.  Sakai, B.  A. van  Hassel, T. Kawada  and
               M. Dokiya, in Solid Oxide Fuel Cells III, eds. S. C. Singhal and H. Iwahara,
               The  Electrochemical  Society  Proceedings,  Pennington,  NJ,  PV9 3-4,
               1993, p. 364.
               S. C. Singhal, Interconnection Material Development for Solid Oxide Fuel
               Cells,  DOE contract DE-AC2 I-84MC21184, Final Report (1985).
               S. Srilomsak, D. P. Schilling and H. U. Anderson, in Solid Oxide Fuel Cells I,
               ed. S.C. Singhal, The Electrochemical Society Proceedings, Pennington,
               NJ, PV89-11,1989, p. 129.
   208   209   210   211   212   213   214   215   216   217   218