Page 144 - How To Solve Word Problems In Calculus
P. 144

By the law of cosines,

                                                2
                                                      2
                                                            2
                                               x = 5 + 10 − 2 · 5 · 10 · cos θ
                                                2
                                               x = 125 − 100 cos θ
                                Differentiating with respect to t,
                                                    dx                   dθ
                                                 2x    = 0 − 100(−sin θ)
                                                    dt                    dt
                                                    dx           dθ
                                                   x   = 50 sin θ
                                                    dt           dt
                                                                  π
                                We need the value of x when θ =     · Since
                                                                  3
                                                                 π
                                 2
                                x = 125 − 100 cos θ, when θ =     ,
                                                                 3
                                                 2
                                               x = 125 − 50 = 75                          √
                                                                                      π    3
                                                     √       √                     sin  =
                                                x =   75 = 5 3                        3 π  1 2
                                                                                   cos  =
                                Substituting,                                         3   2
                                                         √
                                            √  dx          3   π
                                           5 3     = 50 ·    ·
                                               dt         2   36
                                                         √
                                            √  dx    25π 3
                                           5 3     =
                                               dt      36
                                               dx    5π
                                                   =     in/min
                                               dt    36
                                EXAMPLE 2
                                A kite is flying 100 ft above the ground, moving in a strictly
                                horizontal direction at a rate of 10 ft/sec. How fast is the angle
                                between the string and the horizontal changing when there is
                                300 ft of string out?

                                    Solution
                                                                x
                                                                         θ


                                                100
                                                                z




                                                                                        131
   139   140   141   142   143   144   145   146   147   148   149