Page 179 - How To Solve Word Problems In Calculus
P. 179

t  ln 2
                                                    100e 2  = 5000
                                                         t  ln 2
                                                       e 2  = 50
                                                       t
                                                         ln 2 = ln 50
                                                       2
                                                          t    ln 50
                                                            =
                                                          2    ln 2

                                                               2ln50
                                                           t =       ≈ 11.29
                                                                ln 2
                                   It takes approximately 11.29 hours for the population to reach 5000.
                                2. Let y(t) be the population of the colony t hours after the colony
                                   starts growing. Assuming the rate at which the colony grows is
                                                                            dy
                                   proportional to the size of the colony, we have  = ky. This leads
                                                                            dt
                                                       kt
                                   to the solution y = y 0 e . We wish to determine y 0 , the value of y
                                   when t = 0. When t = 1, y = 9000 and when t = 2, y = 12,000.
                                   Substituting, we obtain
                                                           9000 = y 0 e k

                                                          12,000 = y 0 e 2k

                                   Dividing the second equation by the first, we obtain
                                                         12,000   y 0 e 2k
                                                                =
                                                          9000     y 0 e k
                                                              4
                                                                = e k
                                                              3

                                                                    4
                                                              k = ln
                                                                    3
                                                  k
                                   Since 9000 = y 0 e , it follows that
                                                 9000 = y 0 e ln  4 3

                                                            4
                                                 9000 = y 0
                                                            3
                                                               3
                                                    y 0 = 9000 ×  = 6750 bacteria
                                                               4
                               166
   174   175   176   177   178   179   180   181   182   183   184