Page 183 - How To Solve Word Problems In Calculus
P. 183

5000
                                                 P (t) =
                                                       1 + 4e −0.4t
                                                                     )
                                                     = 5000(1 + 4e −0.4t −1
                                                                       ) (−1.6e

                                                P (t) =−5000(1 + 4e −0.4t −2   −0.4t  )
                                                        8000e −0.4t
                                                     =
                                                                 )
                                                       (1 + 4e −0.4t 2
                                                                             8000e −2

                                      The growth rate after 5 months is P (5) =       ≈ 456
                                                                           (1 + 4e )
                                                                                  −2 2
                                      fish per month.

                                   (d) The population growth rate will begin to decline when P (t)
                                      turns from positive to negative. Since P (t) is a continuous


                                      function, we must determine where P (t) = 0.
                                           8000e −0.4t

                                    P (t) =
                                          (1 + 4e −0.4t 2
                                                   )
                                                    d                     d
                                                                                    )
                                          (1 + 4e −0.4t 2  (8000e −0.4t ) − (8000e −0.4t )  (1 + 4e −0.4t 2
                                                   )
                                                    dt                    dt

                                    P (t) =
                                                                   )
                                                           (1 + 4e −0.4t 4
                                          (1 + 4e −0.4t 2  −0.4t ) − (8000e −0.4t )(2)(1 + 4e −0.4t )(−1.6e −0.4t )
                                                   ) (−3200e
                                        =
                                                                       )
                                                              (1 + 4e −0.4t 4
                                          −3200e −0.4t (1 + 4e −0.4t )[(1 + 4e −0.4t ) − 8e −0.4t ]
                                        =
                                                       (1 + 4e −0.4t 4
                                                               )
                                          −3200e −0.4t [(1 + 4e −0.4t ) − 8e  −0.4t ]
                                        =
                                                           )
                                                  (1 + 4e  −0.4t 3
                                          −3200e −0.4t [1 − 4e −0.4t ]
                                      0 =
                                                       )
                                              (1 + 4e −0.4t 3

                                      The only way P (t)can be0isif1 − 4e −0.4t  = 0.
                                                         1 − 4e −0.4t  = 0
                                                                 1 = 4e −0.4t
                                                                     1
                                                             e −0.4t  =
                                                                     4
                               170
   178   179   180   181   182   183   184   185   186   187   188