Page 212 - How To Solve Word Problems In Calculus
P. 212

P1: FYN/FZQ  P2: FXS
                       PB056-07  Macros-FMT   June 1, 2001  13:49  Char Count= 0






                                    We first find the intersection points by solving each equation for x.
                                                          2
                                                    4x − y = 0      y = 2x − 4
                                                         4x = y  2  y + 4 = 2x

                                                              y  2       y + 4
                                                          x =       x =
                                                              4           2
                                                y 2  y + 4
                                    Now we set    =       and solve for y.
                                                4     2

                                                              2
                                                            2y = 4y + 16
                                                           2
                                                         2y − 4y − 16 = 0
                                                            2
                                                           y − 2y − 8 = 0
                                                         (y − 4)(y + 2) = 0
                                                         y =−2      y = 4

                                    The best way to proceed in this problem is to use horizontal
                                    rectangles. The length of each rectangle may be thought of as
                                    x 2 − x 1 and the width dy

                                                       4

                                                 A =    (x 2 − x 1 ) dy
                                                      −2
                                                       4           2

                                                          y + 4   y
                                                   =           −      dy
                                                      −2    2     4
                                                       4

                                                          1        1
                                                   =       y + 2 −  y 2  dy
                                                      −2 2         4
                                                                        4
                                                       1          1
                                                         2
                                                   =    y + 2y −    y  3
                                                       4         12
                                                                       −2

                                                              64              8
                                                   = 4 + 8 −      − 1 − 4 +
                                                              12             12

                                                     20       7
                                                   =    − −
                                                      3       3
                                                   = 9
                                                                                        199
   207   208   209   210   211   212   213   214   215   216   217