Page 55 - Human Inspired Dexterity in Robotic Manipulation
P. 55
Sensorimotor Learning of Dexterous Manipulation 51
[16] J. Diedrichsen, et al., Use-dependent and error-based learning of motor behaviors,
J. Neurosci. 30 (15) (2010) 5159–5166.
[17] T. Verstynen, P.N. Sabes, How each movement changes the next: an experimental and
theoretical study of fast adaptive priors in reaching, J. Neurosci. 31 (27) (2011)
10050–10059.
[18] J.N. Ingram, et al., Multiple grasp-specific representations of tool dynamics mediate
skillful manipulation, Curr. Biol. 20 (7) (2010) 618–623.
[19] T. Brashers-Krug, R. Shadmehr, E. Bizzi, Consolidation in human motor memory,
Nature 382 (1996) 252–255.
[20] D.A. Nowak, C. Koupan, J. Hermsd€orfer, Formation and decay of sensorimotor and
associative memory in object lifting, Eur. J. Appl. Physiol. 100 (6) (2007) 719–726.
[21] J.W. Krakauer, R. Shadmehr, Consolidation of motor memory, Trends Neurosci.
29 (1) (2006) 58–64.
[22] S.E. Pekny, S.E. Criscimagna-Hemminger, R. Shadmehr, Protection and expression of
human motor memories, J. Neurosci. 31 (39) (2011) 13829–13839.
[23] K. Fercho, L.A. Baugh, It’s too quick to blame myself-the effects of fast and slow rates of
change on credit assignment during object lifting, Front. Hum. Neurosci. 8 (2014) 554.
[24] A.M. Gordon, et al., Memory representations underlying motor commands used
during manipulation of common and novel objects, J. Neurophysiol. 69 (6)
(1993) 1789–1796.
[25] B.M. Quaney, et al., Sensorimotor memory for fingertip forces: evidence for a task-
independent motor memory, J. Neurosci. 23 (5) (2003) 1981–1986.
[26] I. Salimi, et al., Specificity of internal representations underlying grasping,
J. Neurophysiol. 84 (5) (2000) 2390–2397.
[27] L.L.C.D. Bursztyn, J.R. Flanagan, Sensorimotor memory of weight asymmetry in
object manipulation, Exp. Brain Res. 184 (1) (2008) 127–133.
[28] I. Salimi, et al., Selective use of visual information signaling objects’ center of mass for
anticipatory control of manipulative fingertip forces, Exp. Brain Res. 150 (1) (2003)
9–18.
[29] W. Zhang, et al., Manipulation after object rotation reveals independent sensorimotor
memory representations of digit positions and forces, J. Neurophysiol. 103 (6) (2010)
2953–2964.
[30] J.M. Zacks, Neuroimaging studies of mental rotation: a meta-analysis and review,
J. Cogn. Neurosci. 20 (1) (2008) 1–19.
[31] Q. Fu, M. Santello, Context-dependent learning interferes with visuomotor transfor-
mations for manipulation planning, J. Neurosci. 32 (43) (2012) 15086–15092.
[32] Q. Fu, Z. Hasan, M. Santello, Transfer of learned manipulation following changes in
degrees of freedom, J. Neurosci. 31 (38) (2011) 13527–13534.
[33] Q. Fu, M. Santello, Retention and interference of learned dexterous manipulation:
interaction between multiple sensorimotor processes, J. Neurophysiol. 113 (1)
(2015) 144–155.
[34] S.E. Criscimagna-Hemminger, R. Shadmehr, Consolidation patterns of human motor
memory, J. Neurosci. 28 (39) (2008) 9610–9618.
[35] R. Shadmehr, T. Brashers-Krug, Functional stages in the formation of human long-
term motor memory, J. Neurosci. 17 (1) (1997) 409–419.
[36] Q. Fu, W. Zhang, M. Santello, Anticipatory planning and control of grasp positions and
forces for dexterous two-digit manipulation, J. Neurosci. 30 (27) (2010) 9117–9126.
[37] J.N. Ingram, J.R. Flanagan, D.M. Wolpert, Context-dependent decay of motor mem-
ories during skill acquisition, Curr. Biol. 23 (12) (2013) 1107–1112.
[38] P. Jenmalm, et al., Lighter or heavier than predicted: neural correlates of corrective
mechanisms during erroneously programmed lifts, J. Neurosci. 26 (35) (2006)
9015–9021.