Page 268 - Industrial Ventilation Design Guidebook
P. 268

REFERENCES                                                                229

                                                                          17 77
                  removed by the mucociliary escalator (mucociliary clearance). '  Deposi-
                  tion and adherence of particulates onto airway mucus also prevents aspi-
                                                   77 119
                                   '
                  rated pollutants, 108 118  viral particles, '   and infected epithelial cells shed
                                                              17 22 119
                                     77
                  from the airway wall  from reaching the alveoli. ' '   Airway mucus also
                  plays an important role in buffering and chemically neutralizing inhaled pol-
                  lutant gases. 120  In addition, mucus serves to protect the airway epithelium
                  against injury caused by rapid fluctuations in airstream temperature, T,, and
                  humidity, C a. 66
                      Disruption of these defense mechanisms can lead to bacterial colonization
                  or viral infection. Mucus temperature is important in controlling respiratory
                  infections because decreasing T m below central body core temperature not
                                               73 76
                  only impairs ciliary movement, '  but also enhances viral replication, 21
                  greatly increasing the likelihood of respiratory infection. Drying of airway
                  mucus also increases the possibility of respiratory infection by reducing mucus
                                                             '
                  thickness and impairing mucociliary clearance. 121 122

        References
                  1. International Commission on Radiological Protection. (1994). Human Respiratory Tract
                    Model for Radiological Protection (Vol. Publication 66). Elsevier Science, Tarrytown, NY.
                  2. Guilrnette, R. A., Wicks, J. D., and Wolff, R. K. (1989). Morphometry of human nasal airways
                    in vivo using magnetic resonance imaging. /. Aerosol Med. 2, 365-377.
                  3. Daviskas, E., Gonda, I., and Anderson, S. D. (1990). Mathematical modeling of heat and water
                    transport in human respiratory tract. /. Appl. Physiol. 69, 362-372.
                  4. Weibel, E. R. (1989). Lung morphometry and models in respiratory physiology. In Respiratory
                    Physiology: An Analytical Approach (H. K. Chang and M. Paiva, Eds.), pp. 1-56. Marce! Dek-
                    ker, New York.
                  5. Weibel, E. R. (1963). Morphology of the Human Lung. Academic Press, New York.
                  6. Horsfield, K. (1986). Morphometry of airways. In The respiratory system: Section 3. Mechan-
                    ics of Breathing, Part 1vol. HI (P.T. Macklem and J. Mead, Eds.), pp. 75-88. American Physio-
                    logical Society, Bethesda, Maryland.
                  7. McNamee, J. E. (1991). Fractal perspectives in pulmonary physiology./. Appl. Physiol. 71, 1-8.
                  8. Nelson, T. R., West, B. J., and Goldberger, A. L. (1990). The fractal lung: universal and species-
                    related scaling patterns. Experientia 46, 251-254.
                  9. Robinson, N. P., Kyle, H., Webber, S. E., and Widdicombe, J. G. (1989). Electrolyte and other chem-
                    ical concentrations in tracheal airway surface liquid and mucus./. Appl. Physiol. 66, 2129-2135.
                 10. Widdicombe, J. G. (1989). Airway mucus. Eur. Respir. J. 2, 107-115.
                 11. Jeffery, P. K. (1987). The origins of secretions in the lower respiratory tract. Eur, ]. Respir. Dis.
                    71, Suppl 153,34-42.
                 12. Pavia, D., Agnew, J. E., Lopez-Vidreiro, M. T., and Clarke, S. W. (1987). General review of tra-
                    cheobronchial clearance. Eur. J. Respir. Dis. 71: (Suppl. 153), 123-129.
                 13. Welsh, M. J. (1987). Electrolyte transport by airway epithelium. Physiol. Rev. 67, 1143-1184.
                 14. Verdugo, P. (1984). Hydration kinetics of exocytosed mucins in cultured secretory cells of the
                    rabbit trachea: a new model. Mucus and Mucosa (Ciba Foundation symposium 109), 212-225.
                 15. Verdugo, P., Aitken, M., Langley, L., and Villalon, M. J. (1987). Molecular mechanism of product
                                                                 ++
                    storage and release in mucin secretion II. The role of extracellular Ca . Biorheology 24, 625-633.
                 16. Boucher, R. C, Stutts, M. J., Bromberg, P. A., and Gatzy, J. T. (1981). Regional differences in
                    airway surface liquid composition./. Appl. Physiol. 50, 613-620.
                 17. Kaliner, M., Shelhamer, J. H., Borson, B., Nadel, J., Patow, C., and Marom, Z. (1986). Human
                    respiratory mucus. Am. Rev. Respir. Dis. 134, 612-621.
                 18. Widdicombe, J. G. (1989). Fluid transport across airway epithelia. Mucus and Mucosa 109,
                    109-120.
                 19. Taylor, A. E., and Drake, R. E. (1978). Fluid and protein movement across the pulmonary
                    microcirculation. In Lung Water and Solute Exchange (N. C. Staub, Ed.), pp. 129-166. Marcel
                    Dekker, New York.
   263   264   265   266   267   268   269   270   271   272   273