Page 121 - Innovations in Intelligent Machines
P. 121

UAV Path Planning Using Evolutionary Algorithms  111
                           36. Piegl, L., Tiller, W.: The NURBS Book. Springer (1997)
                           37. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, A Prac-
                               tical Guide. Academic Press (1988)
                           38. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine
                               Learning. Addison-Wesley (1989)
                           39. Holland, J.H.: Adaptation in Natural and Artificial Systems. The MIT Press
                               (1992)
                           40. Storn, R., and Price, K.: DE - a Simple and Efficient Adaptive Scheme for Global
                               Optimization over Continuous Space. ICSI, Technical Report TR-95-012 (1995)
                           41. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, a Practical
                               Approach to Global Optimization. Springer-Verlag, Berlin Heidelberg (2005)
                           42. Hui-Yuan F., Lampinen J., Dulikravich G.S.: Improvements to Mutation Donor
                               Formulation of Differential Evolution. Proceedings of EUROGEN 2003 confer-
                               ence on Evolutionary Methods for Design, Optimization and Control, Applica-
                               tions to Industrial and Societal Problems, CIMNE, Barcelona (2003)
                           43. Marse, K. and Roberts, S.D.: Implementing a portable FORTRAN uniform (0,1)
                               generator. Simulation (1983) 41–135
                           44. Torczon, V., Trosset, M.W.: Using Approximations to Accelerate Engineering
                               Design Optimization. NASA/CR-1998-208460, ICASE Report No. 98-33 (1998)
                           45. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic
                               optimization methods and computational intelligence. Progress in Aerospace
                               Sciences 38 (2002) 43–76
                           46. Myers, R.H., Montgomery, D.C.: Responce Surface Methodology: Progress and
                               Product in Optimization Using Designed Experiments. Wiley – Interscience,
                               New York (1995)
                           47. Shyy, W., Papila, N., Vaidynathan, R., Tucker, K.: Global Design Optimization
                               for Aerodynamics and Rocket Propulsion Components. Prog. Aerospace Sci. 37
                               (2001) 59–118
                           48. Ratle, A.: Optimal Sampling Strategies for Learning a Fitness Model. Proceed-
                               ings of the 1999 Congress on Evolutionary Computation (CEC99), Washington
                               DC, USA (1999)
                           49. Haykin, S.: Neural Networks, a Comprehensive Foundation. Second Edition,
                               Prentice Hall (1999)
   116   117   118   119   120   121   122   123   124   125   126