Page 118 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 118

By the Pythagorean Theorem,
                                                                                       2
                         E A 2        R A I  A  cos   X  S I  A sin  V   2    X  S I  A  cos   R A I S  sin 

                         V    E A 2     S I A cos    R A I  S  sin  X  2    R A I A  cos    X  S I  A  sin 
                          
                 If we examine these three cases, we can see that the only difference among them is the sign of the term
                  sin  .  If  is taken as positive for lagging power factors and negative for leading power factors (in other
                 words, if  is the impedance angle), then all three cases can be represented by the single equation:
                         V    E A 2     S I A cos    R A I S  sin  X  2   R A I A cos    X  S I  A  sin 
                          

                 A MATLAB program that calculates terminal voltage as function of impedance angle is shown below:

                 % M-file: prob4_25.m
                 % M-file to calculate and plot the terminal voltage
                 % of a synchronous generator as a function of impedance
                 % angle as PF changes from 0.90 lagging to 0.90
                 % leading.

                 % Define values for this generator
                 EA = 2814;                  % Internal gen voltage (V)
                 VP = 1850;                  % Phase voltage (V)
                 RA = 0.7;                   % Armature resistance (ohms)
                 XS = 15.7;                  % XS (ohms)
                 IA = 90.2;                  % Current (A)

                 % Calculate impedance angle theta in degrees
                 % for the specified range of power factors
                 theta = -25.8:0.258:25.8;   % In degrees
                 th = theta * pi/180;        % In radians

                 % Calculate the phase voltage and terminal voltage
                 VP  = sqrt( EA^2 - (XS.*IA.*cos(th) - RA.*IA.*sin(th)).^2 ) ...
                     - RA.*IA.*cos(th) - XS.*IA.*sin(th);
                 VT  = VP .* sqrt(3);

                 % Plot the terminal voltage versus power factor
                 figure(1);
                 plot(theta,abs(VT)/1000,'b-','LineWidth',2.0);
                 title ('\bfTerminal Voltage Versus Impedance Angle');
                 xlabel ('\bfImpedance Angle (deg)');
                 ylabel ('\bfTerminal Voltage (kV)');
                 grid on;
                 hold off;
                 The resulting plot of terminal  voltage  versus  impedance angle (with field and armature currents held
                 constant) is shown below:














                                                           112
   113   114   115   116   117   118   119   120   121   122   123