Page 130 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 130

(c)  This motor has 6 poles and an electrical frequency of 60 Hz, so its rotation speed is  n   = 1200
                                                                                                      m
                 r/min.  The induced torque is
                              P              298.4 kW
                             OUT                               3166 N m
                                                                        
                          ind
                                m           900 r/min    1 min     2  rad  
                                                   60 s         1 r    
                 The maximum possible induced torque for the motor at this field setting is the maximum possible power
                 divided by 
                             m
                                                         
                                3VE                3 480 V 406 V 
                                                                                     
                          ind,max      A                                 10,340 N m
                                
                                  m X S          900 r/min      1 min         2  rad        0.6 
                                                     60 s     1 r  
                 The current operating torque is about 1/3 of the maximum possible torque.

                 (d)  If the magnitude of the internal generated voltage  E A  is increased by 30%, the new torque angle
                 can be found from the fact that  E A  sin  P    constant .

                         E A 2    1.30 E   A 1   1.30 406 V     487.2 V

                                   E            1   406 V          
                            sin   1   A 1  sin   1     sin     sin      17.8        14.8
                          2
                                   E A 2             487.2 V       
                 The new armature current is
                                                  
                                            
                              V   E    480 0  V 487.2    14.8  V
                                                                
                                                                               
                         I        A 2                              208    4.1  A
                          A
                           2
                                jX S               j 0.6 
                 The magnitude of the armature current is 208 A, and the power factor is cos (-24.1) = 0.913 lagging.
                 (e)  A MATLAB program to calculate and plot the motor’s V-curve is shown below:

                 % M-file: prob5_1e.m
                 % M-file create a plot of armature current versus Ea
                 %   for the synchronous motor of Problem 5-1.

                 % Initialize values
                 Ea = (0.90:0.01:1.70)*406;        % Magnitude of Ea volts
                 Ear = 406;                        % Reference Ea
                 deltar = -17.8 * pi/180;          % Reference torque angle
                 Xs = 0.6;                         % Synchronous reactance (ohms)
                 Vp = 480;                         % Phase voltage at 0 degrees
                 Ear = Ear * (cos(deltar) + j * sin(deltar));

                 % Calculate delta2
                 delta2 = asin ( abs(Ear) ./ abs(Ea) .* sin(deltar) );

                 % Calculate the phasor Ea
                 Ea = Ea .* (cos(delta2) + j .* sin(delta2));

                 % Calculate Ia
                 Ia = ( Vp - Ea ) / ( j * Xs);

                 % Plot the v-curve

                                                           124
   125   126   127   128   129   130   131   132   133   134   135