Page 177 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 177

The slip at pullout torque is found by calcula ting the Thevenin equivalent of the input circuit from the
                 rotor back to the power supply, and then using that with the rotor circuit model.
                        jX  R   jX     16.67j     0.15     j 0.710   
                  Z TH    M   1    1                                   0.138   j 0.6822     0.696 78.6     
                       R 
                         1     1   M   j X   0.15       j  X    16.67       0.710 
                             jX                       16.67 j   
                                                                                                
                                                                                          
                  V TH        M       V                                       212.5 0  V   203 0.49  V
                        R 
                         1     1  X  M   j X   0.15       j     16.67       0.710 
                 The slip at pullout torque is
                                       R
                         s max         2
                                R TH 2      TH    X  2  X  2
                                            0.154 
                         s max                                     0.0976
                                       0.138   2      0.6822   0.890      2


                 The synchronous speed of this motor is
                               120 f  120 50 Hz 
                         n        e              1500 r/min
                          sync
                                 P         4
                          sync        1500 r/min      2 rad           1 min       157.1 rad/s
                                            1 r      60 s 

                          sp
                 This corre onds to a rotor speed of
                                n    1 s     n  1  976 0.0  1500 r/min  1354 r/min
                          max      max  sync
                 The pullout torque of the motor is

                                            3V  2
                          max               TH
                                  sync     R TH  R TH      TH    X 2  X  2 
                                              2
                                                            
                                                            
                                                               3 203 V  2
                          max  
                                        157.1 rad/s 0.138              2     0.138   0.6822        0.890   2     


                          max    229.3 N m
                                      
          6-18.  Plot the following quantiti es for the motor in Problem 6-15 as slip varies from 0% to 10%:  (a)   ind    (b)

                  P conv   (c)   P   (d)  Efficiency .  At what slip does  P  equal the rated power of the machine?
                            out
                                                                 out
                 SOLUTION  This problem is ideally suited to solution w ith a MATLAB program.  An appropriate  program
                 is shown below.  It follows the calculations perform  for Problem 6-18, but repeats them at many  values
                                                               ed
                 of slip, and then plots the results.  Note that it plots all the specified values versus  n , which varies from
                                                                                            m
                 1620 to 1800 r/min, corresponding to a range of 0 to 10% slip.

                 % M-file: prob6_18.m
                 %  M-file create a plot of the induced torque, power
                 %   converted, power o     ut, and efficiency of the induction
                 %   motor of Problem 6-15 as a function of slip.

                 % First, initialize the values needed in this progr          am.
                 r1  = 0.015;                 % Stator resistance
                                                           171
   172   173   174   175   176   177   178   179   180   181   182