Page 173 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 173

I A
                                         R 1      jX 1         jX 2       R 2


                                  +                           j1.066 ?  0.154 ?
                                        0.15 ?  j0.852 ?
                                                                                        1   s
                                                   j20 ?    jX M                    R      
                                 V ?                                                  2  s  

                                                                                      7.546 ?
                                  -

                 (a)  The easiest way to find the line current (or armature current) is to get the equivalent impedance  Z
                                                                                                              F
                 of the rotor circuit in parallel with  jX  M  , and then calculate the current as the phase voltage divided  by
                 the sum of the series impedances, as shown below.

                                 I A
                                           R 1     jX 1          jX F      R F

                                   +
                                         0.15 ?   j0.852 ?



                                   V ?


                                    -

                 The equivalent impedance of the rotor circuit in parallel with  jX  is:
                                                                           M
                                  1                1
                         Z   F  1   1     1          1        6.123  j 3.25 6.932 28.0       
                                                                            
                              jX M    Z 2  j 20     7.70   j 1.066

                 The phase voltage is 460/ 3  = 266 V, so line current  I L   is
                                         V                         266 V
                                                                        0
                         I   L  I   A            
                                 R   1  jX   1  R   F  jX F  0.15       j 0.852      6.123     j 3.25 
                                            
                         I   L  I   A  35.5    33.2 A
                 (b)  The  stator power factor is
                         PF   cos 33.2   0.83  7  lagging

                                                       u
                 (c)  To find the rotor power factor, we m st find the impedance angle of the rotor
                                   X          1.066
                            tan   1  2    tan   1    7.88
                          R
                                  R 2  / s    7.70
                 (d)  The rotor frequency is
                                       
                         f   r  s   sf   0.02 60 H   z   1.2 Hz
                 Therefore the rotor power factor is

                         PF   R  cos7.88    0.991 lagging


                                                           167
   168   169   170   171   172   173   174   175   176   177   178