Page 170 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 170

P               23.4 kW
                                                                         
                             conv                               132.6 N m
                          ind
                               m             1685 r/min    2 rad       1 min 
                                                    1 r          60 s   
                 Alternately, the induced torque can be found as

                              P               25.0 kW
                             AG                                 132.6 N m
                                                                          
                          ind
                               sync          1800 r/min    2 rad       1 min 
                                                    1 r          60 s   
                 (c)  The output power of this motor is

                         P   out  P conv    P mech    23,400 W 300 W   23,100 W
                                                   
                               P              23.1 kW
                          load                2 rad       1 min     130.9 N m
                                                                         
                                out
                                    
                                m
                                                  1685 r/min    1 r          60 s   
          6-13.  Figure 6-18a shows a simple circuit consisting of a voltage source, a resistor, and two reactances.  Find
                 the Thevenin equivalent voltage and impedance of  this circuit at the terminals.  Then derive the
                 expressions for the magnitude of  V TH  and for  R TH  given in Equations (6-41b) and (6-44).


















                 SOLUTION  The Thevenin voltage of this circuit is
                                    jX
                         V TH         M      V
                                               
                               R 
                                1     1  X  M   j X 
                 The magnitude of this voltage is
                                     X
                         V TH         M       V
                                                
                                R   1 2    1  X M   X   2

                                                             2
                 If X M    X , then  R   1 2   X   1  X M    2   X   1  X  M   , so
                            1
                                 X
                         V       M   V
                               X   X M
                          TH            
                                1
                 The Thevenin impedance of this circuit is
                                jX  R   jX  
                         Z TH    R   1  M    1 1  X 1 M  j X 





                                                           164
   165   166   167   168   169   170   171   172   173   174   175