Page 165 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 165

v_th = v_phase * ( xm / sqrt(r1^2 + (x1 + xm)^2) );
                 z_th = ((j*xm) * (r1 + j*x1)) / (r1 + j*(x1 + xm));
                 r_th = real(z_th);
                 x_th = imag(z_th);

                 % Now calculate the torque-speed characteristic for many
                 % slips between 0 and 1.  Note that the first slip value
                 % is set to 0.001 instead of exactly 0 to avoid divide-
                 % by-zero problems.
                 s = (0:1:50) / 50;           % Slip
                 s(1) = 0.001;
                 nm = (1 - s) * n_sync;       % Mechanical speed (r/min)
                 wm = (1 - s) * w_sync;       % Mechanical speed (rad/s)

                 % Calculate torque and output power versus speed
                 for ii = 1:51
                    t_ind(ii) = (3 * v_th^2 * r2 / s(ii)) / ...
                            (w_sync * ((r_th + r2/s(ii))^2 + (x_th + x2)^2) );
                    p_out(ii) = t_ind(ii) * wm(ii);
                 end

                 % Plot the torque-speed curve
                 figure(1);
                 plot(nm,p_out/1000,'k-','LineWidth',2.0);
                 xlabel('\bf\itn_{m}  \rm\bf(r/min)');
                 ylabel('\bf\itP_{OUT}  \rm\bf(kW)');
                 title ('\bfInduction Motor Ouput Power versus Speed');
                 grid on;

                 The resulting plot is shown below:































          6-8.   For the motor of Problem 6-5, how much additional resistance (referred to the stator circuit) would it be
                 necessary to add to the rotor circuit to make the maximum torque occur at starting conditions (when the
                 shaft is not moving)?  Plot the torque-speed characteristic of this motor with the additional resistance
                 inserted.


                                                           159
   160   161   162   163   164   165   166   167   168   169   170