Page 250 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 250

% Now calculate the internal generated voltage for
                 % each armature current.
                 e_a = v_t - i_a * r_a;

                 % Calculate the effective field current for each armature
                 % current.
                 i_f = (n_se / n_f) * i_a;

                 % Calculate the resulting internal generated voltage at
                 % 1200 r/min by interpolating the motor's magnetization
                 % curve.
                 e_a0 = interp1(if_values,ea_values,i_f);

                 % Calculate the resulting speed from Equation (9-13).
                 n = ( e_a ./ e_a0 ) * n_0;

                 % Calculate the induced torque corresponding to each
                 % speed from Equations (8-55) and (8-56).
                 t_ind = e_a .* i_a ./ (n * 2 * pi / 60);

                 % Plot the torque-speed curves
                 figure(1);
                 plot(t_ind,n,'b-','LineWidth',2.0);
                 xlabel('\bf\tau_{ind} (N-m)');
                 ylabel('\bf\itn_{m} \rm\bf(r/min)');
                 title ('\bfSeries DC Motor Torque-Speed Characteristic');
                 grid on;
                 The resulting torque-speed characteristic is shown below:



































                 The  extreme speeds in this characteristic are due to the very light flux in the machine.  To make a
                 practical series motor out of this machine, it would be necessary to include 20 to 30 series turns instead of
                 15.

                                                           244
   245   246   247   248   249   250   251   252   253   254   255