Page 95 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 95

E
                                                                                     A

                                                                                    


                                                
                                                                  V          jX    I
                                                                                S A
                                             I                        R    I
                                                                          A
                                                                        A
                                               A
                 By the Pythagorean Theorem,
                         E A 2    V     R I  XI A sin     cos   2    S A cos     R I  sin    XI  2
                                     A A
                                                                        A S
                                                S
                                                                               
                         V     E   A 2    S A cos   RI  sin    X I  2    RI  cos     X I  sin
                                                              A A
                                                 A S
                                                                         S A
                                      
                 In this case,    25.84 , so cos  0.9  and sin   0.6512 .
                 A phasor diagram representing the situation at leading power factor is shown below:
                                                                    E
                                                                      A

                                                                      jX    I
                                                                        S A    
                                           I
                                            A                          R    I
                                                                       A  A  
                                                                         V
                                                                          
                 By the Pythagorean Theorem,

                         E A 2    V     R I  XI A sin     cos   2    S A cos     R I  sin    XI  2
                                     A A
                                                                        A S
                                                S
                                                                               
                         V     E   A 2    S A cos   RI  sin    X I  2    RI  cos     X I  sin
                                                 A S
                                                                         S A
                                                              A A
                 In this case,   25.84 , so cos  0.9  and sin   0.6512 .
                 A phasor diagram representing the situation at unity power factor is shown below:
                                                                          E
                                                                           A
                                                                              jX    I
                                                                                S A
                                             
                                          I                           V   R    I
                                           A                              A  A
                 By the Pythagorean Theorem,

                         E A 2     2  V   S A  X I  2

                         V     A 2    E  S  A  X I  2
                                0
                                                             0
                 In this case,   , so cos  1.0  and sin  .
                 The MATLAB program is shown below takes advantage of this fact.


                                                           89
   90   91   92   93   94   95   96   97   98   99   100