Page 96 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 96

% M-file: prob4_4e.m
                 % M-file to calculate and plot the terminal voltage
                 % of a synchronous generator as a function of load
                 % for power factors of 0.8 lagging, 1.0, and 0.8 leading.

                 % Define values for this generator
                 EA = 7967;                  % Internal gen voltage
                 I = 0:20.92:2092;           % Current values (A)
                 R = 0.20;                   % R (ohms)
                 X = 2.50;                   % XS (ohms)

                 % Calculate the voltage for the lagging PF case

                 VP_lag  = sqrt( EA^2 - (X.*I.*0.9 - R.*I.* 0.6512).^2 ) ...
                         - R.*I.*0.9 - X.*I.* 0.6512;
                 VT_lag  = VP_lag .* sqrt(3);

                 % Calculate the voltage for the leading PF case
                 VP_lead = sqrt( EA^2 - (X.*I.*0.9 + R.*I.* 0.6512).^2 ) ...
                         - R.*I.*0.9 + X.*I.* 0.6512;
                 VT_lead = VP_lead .* sqrt(3);

                 % Calculate the voltage for the unity PF case
                 VP_unity = sqrt( EA^2 - (X.*I).^2 );
                 VT_unity = VP_unity .* sqrt(3);

                 % Plot the terminal voltage versus load
                 plot(I,abs(VT_lag)/1000,'b-','LineWidth',2.0);
                 hold on;
                 plot(I,abs(VT_unity)/1000,'k--','LineWidth',2.0);
                 plot(I,abs(VT_lead)/1000,'r-.','LineWidth',2.0);
                 title ('\bfTerminal Voltage Versus Load');
                 xlabel ('\bfLoad (A)');
                 ylabel ('\bfTerminal Voltage (kV)');
                 legend('0.9 PF lagging','1.0 PF','0.9 PF leading');
                 %axis([0 2200 0 20]);
                 grid on;
                 hold off;

                 The resulting plot is shown below:

























                                                           90
   91   92   93   94   95   96   97   98   99   100   101