Page 175 - Intro to Tensor Calculus
P. 175

170



              I 44.  Show that for a smooth surface z = f(x, y) the mean curvature at a point on the surface is given by

                                                     2                      2
                                                (1 + f )f xx − 2f x f y f xy +(1 + f )f yy
                                                     y
                                                                            x
                                           H =                                   .
                                                                2
                                                            2
                                                         2(f + f +1) 3/2
                                                           x    y
              I 45.  Express the Frenet-Serret formulas (1.5.13) in terms of Christoffel symbols of the second kind.
              I 46.  Verify the relation (1.5.106).
                                                                                  ij
              I 47.   In V n assume that R ij = ρg ij and show that ρ =  R  where R = g R ij . This result is known as
                                                                    n
               Einstein’s gravitational equation at points where matter is present. It is analogous to the Poisson equation
                 2
               ∇ V = ρ from the Newtonian theory of gravitation.
              I 48.  In V n assume that R ijkl = K(g ik g jl − g il g jk )and show that R = Kn(1 − n). (Hint: See problem 23.)
              I 49.  Assume g ij =0 for i 6= j and verify the following.
                (a) R hijk =0 for h 6= i 6= j 6= k
                                  2 √      √        √        √       √
                           √     ∂   g ii  ∂ g ii ∂ log  g hh  ∂ g ii ∂ log  g kk
                (b) R hiik =  g ii      −                −                  for h, i, k unequal.
                                   h
                                ∂x ∂x k    ∂x h   ∂x k      ∂x k    ∂x h
                                                                                               
                                                 √                  √           n    √     √
                           √  √     ∂      1   ∂ g ii    ∂     1 ∂ g hh       X    ∂ g ii ∂ g hh 
                (c) R hiih =  g ii g hh   √           +      √           +                      where h 6= i.
                                     ∂x h   g hh ∂x h    ∂x i   g ii ∂x i            ∂x m  ∂x m
                                                                               m=1
                                                                             m6=hm6=i
              I 50.  Consider a surface of revolution where x = r cos θ, y = r sin θ and z = f(r) is a given function of r.
                                                    0 2
                                                         2
                                                             2
                                                                2
                                          2
               (a) Show in this V 2 we have ds =(1 + (f ) )dr + r dθ where =  d  .
                                                                        0
                                                                           ds
               (b) Show the geodesic equations in this V 2 are
                                           2
                                                   0 00
                                          d r    f f      dr    2   r      dθ    2
                                             +                −                 =0
                                                     0 2
                                                                      0 2
                                          ds 2  1+(f )   ds      1+(f )    ds
                                           2
                                          d θ   2 dθ dr
                                             +        =0
                                          ds 2  r ds ds
                                                            dθ   a
               (c) Solve the second equation in part (b) to obtain  =  . Substitute this result for ds in part (a) to show
                                                            ds   r 2
                       p
                              0 2
                      a  1+(f )
               dθ = ±   √        dr which theoretically can be integrated.
                          2
                       r r − a 2
   170   171   172   173   174   175   176   177   178   179   180