Page 179 - Intro to Tensor Calculus
P. 179

174



               Laplacian

                                  2
                   The Laplacian ∇ U has the contravariant form

                                                                          ∂U
                                              2
                                                    ij
                                                             ij
                                                                        ij
                                            ∇ U = g U ,ij =(g U ,i ) ,j =  g    .                      (2.1.9)
                                                                          ∂x i
                                                                              ,j
               Expanding this expression produces the equations:
                                                  ∂      ∂U        ∂U     j
                                            2          ij        im
                                          ∇ U =       g       + g
                                                 ∂x j    ∂x i      ∂x i  mj
                                                                     √

                                                  ∂    ij  ∂U    1 ∂ g  ij  ∂U
                                            2
                                          ∇ U =       g       + √      g
                                                 ∂x j    ∂x i     g ∂x j  ∂x i
                                                                                                      (2.1.10)


                                                                              √

                                                  1  √   ∂      ∂U        ∂U ∂ g
                                            2                 ij        ij
                                          ∇ U = √      g   j  g   i  + g    i   j
                                                   g    ∂x      ∂x        ∂x ∂x
                                                  1  ∂    √    ∂U
                                            2                ij
                                          ∇ U = √          gg       .
                                                   g ∂x j      ∂x i
                   In orthogonal coordinates we have g ij  =0 for i 6= j and
                                                                 2
                                                     2
                                              g 11 = h ,   g 22 = h ,  g 33 = h 2 3
                                                     1
                                                                 2
               and so (2.1.10) when expanded reduces to the form
                                   1      ∂    h 2 h 3 ∂U     ∂    h 1 h 3 ∂U     ∂    h 1 h 2 ∂U
                           2
                         ∇ U =                          +                +                  .         (2.1.11)
                                h 1 h 2 h 3 ∂x 1  h 1 ∂x 1  ∂x 2  h 2 ∂x 2  ∂x 3  h 3 ∂x 3
               This representation is only valid in an orthogonal system of coordinates.
               EXAMPLE 2.1-3. (Laplacian)       Find the Laplacian in spherical coordinates.
               Solution: Utilizing the results given in the previous example we find the Laplacian in spherical coordinates
               has the form
                                        1      ∂     2  ∂U      ∂      ∂U      ∂     1 ∂U
                                2
                               ∇ U =              ρ sin θ    +     sin θ    +                .        (2.1.12)
                                       2
                                      ρ sin θ ∂ρ        ∂ρ     ∂θ       ∂θ    ∂φ   sin θ ∂φ
               This simplifies to
                                             2
                                                             2
                                                                                     2
                                           ∂ U    2 ∂U    1 ∂ U   cot θ ∂U     1    ∂ U
                                      2
                                    ∇ U =       +      +        +         +      2     .              (2.1.13)
                                                          2
                                                                             2
                                            ∂ρ 2  ρ ∂ρ   ρ ∂θ 2    ρ 2  ∂θ  ρ sin θ ∂φ 2
                   The table 1 gives the vector and tensor representation for various quantities of interest.
   174   175   176   177   178   179   180   181   182   183   184