Page 183 - Intro to Tensor Calculus
P. 183

178








                          ∂E z   ∂E y    ∂B x     ∂H z   ∂H y       ∂D x
                               −     = −               −     = J x +         ∂D x   ∂D y   ∂D z
                           ∂y     ∂z      ∂t       ∂y     ∂z         ∂t           +     +      = %
                                                                              ∂x     ∂y    ∂z
                          ∂E x   ∂E z    ∂B y     ∂H x   ∂H z       ∂D y
                               −     = −               −     = J y +
                           ∂z     ∂x      ∂t       ∂z     ∂x         ∂t
                                                                              ∂B x  ∂B y   ∂B z
                          ∂E y   ∂E x    ∂B z     ∂H y   ∂H x       ∂D z          +      +     =0
                               −     = −              −      = J z +          ∂x     ∂y    ∂z
                           ∂x     ∂y      ∂t       ∂x     ∂y         ∂t
                        Here we have introduced the notations:

                                  D x = D(1)  B x = B(1)  H x = H(1)  J x = J(1)  E x = E(1)
                                  D y = D(2)  B y = B(2)  H y = H(2)  J y = J(2)  E y = E(2)
                                  D z = D(3)  B z = B(3)  H z = H(3)  J z = J(3)  E z = E(3)

                                           3
                                   2
                          1
                    with x = x,   x = y,  x = z,   h 1 = h 2 = h 3 =1
                                        Table 3 Maxwell’s equations Cartesian coordinates











                                      1 ∂E z  ∂E θ    ∂B r          1 ∂H z  ∂H θ       ∂D r
                                            −     = −                     −      = J r +
                                      r ∂θ     ∂z      ∂t           r ∂θ     ∂z         ∂t
                                        ∂E r  ∂E z    ∂B θ           ∂H r   ∂H z       ∂D θ
                                            −     = −                     −      = J θ +
                                        ∂z     ∂r      ∂t             ∂z     ∂r         ∂t
                                 1 ∂         1 ∂E r   ∂B z     1 ∂         1 ∂H r      ∂D z
                                     (rE θ ) −    = −              (rH θ ) −     = J z +
                                 r ∂r        r ∂θ      ∂t      r ∂r        r ∂θ         ∂t
                                 1 ∂         1 ∂D θ  ∂D z        1 ∂        1 ∂B θ  ∂B z
                                     (rD r )+      +     = %        (rB r )+      +     =0
                                 r ∂r        r ∂θ     ∂z         r ∂r       r ∂θ     ∂z


                        Here we have introduced the notations:

                                  D r = D(1)  B r = B(1)  H r = H(1)  J r = J(1)  E r = E(1)
                                  D θ = D(2)  B θ = B(2)  H θ = H(2)  J θ = J(2)  E θ = E(2)

                                  D z = D(3)  B z = B(3)  H z = H(3)  J z = J(3)  E z = E(3)
                          1
                                  2
                                           3
                    with x = r,  x = θ,   x = z,  h 1 =1,  h 2 = r,  h 3 =1.
                                      Table 4 Maxwell’s equations in cylindrical coordinates.
   178   179   180   181   182   183   184   185   186   187   188