Page 187 - Intro to Tensor Calculus
P. 187

182



                                                      EXERCISE 2.1

              I 1. In cylindrical coordinates (r, θ, z)with f = f(r, θ, z) find the gradient of f.
                                                                          ~
                                                       ~
                                                           ~
              I 2. In cylindrical coordinates (r, θ, z)with A = A(r, θ, z) find div A.
                                                         ~
                                                                          ~
                                                     ~
              I 3. In cylindrical coordinates (r, θ, z)for A = A(r, θ, z) find curl A.
                                                                      2
              I 4. In cylindrical coordinates (r, θ, z)for f = f(r, θ, z) find ∇ f.
              I 5. In spherical coordinates (ρ, θ, φ)with f = f(ρ, θ, φ) find the gradient of f.
                                                          ~
                                                      ~
                                                                          ~
              I 6. In spherical coordinates (ρ, θ, φ)with A = A(ρ, θ, φ) find div A.
                                                    ~
                                                        ~
                                                                         ~
              I 7. In spherical coordinates (ρ, θ, φ)for A = A(ρ, θ, φ) find curl A.
                                                                      2
              I 8. In spherical coordinates (ρ, θ, φ)for f = f(ρ, θ, φ) find ∇ f.
                       r
              I 9. Let ~ = x ˆ e 1 +y ˆ e 2 +z ˆ e 3 denote the position vector of a variable point (x, y, z) in Cartesian coordinates.
                                                                                    r
               Let r = |~| denote the distance of this point from the origin. Find in terms of ~ and r:
                       r
                                                                  1
                                                  m
                        (a) grad (r)   (b)  grad(r )    (c)  grad( )    (d) grad (ln r)  (e)  grad(φ)
                                                                  r
               where φ = φ(r) is an arbitrary function of r.
                        r
              I 10. Let ~ = x ˆ e 1 +y ˆ e 2 +z ˆ e 3 denote the position vector of a variable point (x, y, z) in Cartesian coordinates.
               Let r = |~| denote the distance of this point from the origin. Find:
                       r
                                                         m
                                                                                        r
                                            r
                                   (a)  div (~)(b) div (r ~r)(c)   div (r −3 r ~)(d)  div (φ~)
               where φ = φ(r) is an arbitrary function or r.

                          r
              I 11.    Let ~ = x ˆ e 1 + y ˆ e 2 + z ˆ e 3 denote the position vector of a variable point (x, y, z) in Cartesian
               coordinates. Let r = |~| denote the distance of this point from the origin. Find: (a)  curl ~  (b)curl (φ~)
                                  r
                                                                                              r
                                                                                                           r
               where φ = φ(r) is an arbitrary function of r.
                                                                     ~
              I 12. Expand and simplify the representation for curl (curl A).
              I 13. Show that the curl of the gradient is zero in generalized coordinates.
                                                                                       1
                                                                                          2
                                                                                             3
              I 14. Write out the physical components associated with the gradient of φ = φ(x ,x ,x ).
              I 15. Show that
                                                1  ∂  √    im        i    1  ∂  √    i
                                      im
                                     g  A i,m = √        gg  A m = A = √          gA .
                                                                     ,i
                                                 g ∂x i                    g ∂x i
   182   183   184   185   186   187   188   189   190   191   192