Page 189 - Intro to Tensor Calculus
P. 189

184



                   Change the given equations from a tensor notation to a vector notation.

                                                         i
                                       I 33.    ijk B k,j + F =0
                                       I 34.  g ij   jkl B l,k + F i =0
                                               ∂%
                                       I 35.      +(%v i ),i =0
                                               ∂t
                                                                            2
                                                 ∂v i    ∂v i     ∂P       ∂ v i
                                       I 36.  %(    + v m    )= −     + µ        + F i
                                                                           m
                                                 ∂t      ∂x m     ∂x i   ∂x ∂x m
                                                                                       ZZ
              I 37. The moment of inertia of an area or second moment of area is defined by I ij =  (y m y m δ ij −y i y j ) dA
                                                                                           A
               where dA is an element of area. Calculate the moment of inertia I ij ,i, j =1, 2 for the triangle illustrated in
                                                   1  bh 3   1  b h
                                                               2 2

               the figure 2.1-1 and show that I ij =  12  2 2  −  24  3  .
                                                            1
                                                   1
                                                 −   b h      b h
                                                   24       12












                                          Figure 2.1-1 Moments of inertia for a triangle




              I 38. Use the results from problem 37 and rotate the axes in figure 2.1-1 through an angle θ to a barred
               system of coordinates.
                (a) Show that in the barred system of coordinates


                                                   I 11 + I 22   I 11 − I 22
                                            I 11 =           +            cos 2θ + I 12 sin 2θ
                                                       2            2

                                                     I 11 − I 22
                                       I 12 = I 21 = −         sin 2θ + I 12 cos 2θ
                                                         2

                                                   I 11 + I 22   I 11 − I 22
                                            I 22 =           −            cos 2θ − I 12 sin 2θ
                                                       2            2
                (b) For what value of θ will I 11 have a maximum value?
                (c) Show that when I 11 is a maximum, we will have I 22 a minimum and I 12 = I 21 =0.
   184   185   186   187   188   189   190   191   192   193   194