Page 188 - Intro to Tensor Calculus
P. 188

183



                                                                                            2
                                                                               2
                                                                     2
                                                                                                           2
                                                                                                       2
                                                                                              2
                                         2
                                              2
                                                  2
                               r
              I 16. Let r =(~ ·~) 1/2  =  p x + y + z ) and calculate (a) ∇ (r)  (b) ∇ (1/r)(c) ∇ (r )  (d) ∇ (1/r )
                             r
              I 17.   Given the tensor equations D ij =  1 (v i,j + v j,i ),  i, j =1, 2, 3. Let v(1),v(2),v(3) denote the
                                                      2
               physical components of v 1 ,v 2 ,v 3 and let D(ij) denote the physical components associated with D ij . Assume
                                        2
                                           3
                                     1
                                                                                       2
               the coordinate system (x ,x ,x ) is orthogonal with metric coefficients g (i)(i) = h ,i =1, 2, 3and g ij =0
                                                                                       i
               for i 6= j.
                (a) Find expressions for the physical components D(11),D(22) and D(33) in terms of the physical compo-
                                                      1 ∂V (i)  X  V (j) ∂h i
                   nents v(i),i =1, 2, 3. Answer: D(ii)=      +             no sum on i.
                                                      h i ∂x i     h i h j ∂x j
                                                                j6=i
                (b) Find expressions for the physical components D(12),D(13) and D(23) in terms of the physical compo-
                                                      1 h i ∂     V (i)     h j ∂    V (j)

                   nents v(i),i =1, 2, 3. Answer: D(ij)=               +
                                                      2 h j ∂x j  h i    h i ∂x i  h j
              I 18. Write out the tensor equations in problem 17 in Cartesian coordinates.
              I 19. Write out the tensor equations in problem 17 in cylindrical coordinates.
              I 20. Write out the tensor equations in problem 17 in spherical coordinates.
                                                                     ~
                                                                         ~
              I 21. Express the vector equation (λ +2µ)∇Φ − 2µ∇× ~ω + F = 0intensorform.
              I 22. Write out the equations in problem 21 for a generalized orthogonal coordinate system in terms of
               physical components.
              I 23. Write out the equations in problem 22 for cylindrical coordinates.
              I 24. Write out the equations in problem 22 for spherical coordinates.
              I 25. Use equation (2.1.4) to represent the divergence in parabolic cylindrical coordinates (ξ, η, z).

              I 26. Use equation (2.1.4) to represent the divergence in parabolic coordinates (ξ, η, φ).

              I 27. Use equation (2.1.4) to represent the divergence in elliptic cylindrical coordinates (ξ, η, z).

                   Change the given equations from a vector notation to a tensor notation.

                                      ~
                                                         ~
                                               ~
                               I 28.  B = ~v ∇· A +(∇· ~v) A
                                                                         ~
                                                        ~
                                                                                            ~
                                       d              dA                dB                dC
                                                                                   ~
                                                                                      ~
                                                                              ~
                                                                ~
                                                                     ~
                                                            ~
                                             ~
                                                 ~
                                         ~
                               I 29.    [A · (B × C)] =   · (B × C)+ A · (  × C)+ A · (B ×   )
                                      dt               dt                dt                dt
                                      d~v  ∂~v
                               I 30.     =    +(~v ·∇)~v
                                      dt    ∂t
                                         ~
                                      1 ∂H
                                                   ~
                               I 31.        = −curl E
                                      c ∂t
                                        ~
                                      dB
                                                      ~
                                                               ~
                                             ~
                               I 32.      − (B ·∇)~v + B(∇· ~v)= 0
                                       dt
   183   184   185   186   187   188   189   190   191   192   193