Page 190 - Intro to Tensor Calculus
P. 190

185
























                                                   Figure 2.1-2 Mohr’s circle

                               1
              I 39. Otto Mohr gave the following physical interpretation to the results obtained in problem 38:
                   • Plot the points A(I 11 ,I 12 )and B(I 22 , −I 12 ) as illustrated in the figure 2.1-2
                   • Draw the line AB and calculate the point C where this line intersects the I axes. Show the point C
                   has the coordinates
                                                           I 11 + I 22
                                                          (        , 0)
                                                               2
                   • Calculate the radius of the circle with center at the point C and with diagonal AB and show this
                   radius is
                                                         s
                                                                      2

                                                            I 11 − I 22   2
                                                     r =               + I 12
                                                                2
                   • Show the maximum and minimum values of I occur where the constructed circle intersects the I axes.
                                         I 11 + I 22                 I 11 + I 22
                   Show that I max = I 11 =       + r    I min = I 22 =      − r.
                                             2                          2

                                                                                   I 11  I 12
              I 40. Show directly that the eigenvalues of the symmetric matrix I ij =       are λ 1 = I max and
                                                                                   I 21  I 22
               λ 2 = I min where I max and I min are given in problem 39.
              I 41. Find the principal axes and moments of inertia for the triangle given in problem 37 and summarize
               your results from problems 37,38,39, and 40.

              I 42. Verify for orthogonal coordinates the relations
                                                           3
                                           h      i       X   e (i)jk  ∂(h (k) A(k))
                                                ~
                                            ∇× A · ˆ (i) =          h (i)
                                                    e
                                                             h 1 h 2 h 3   ∂x j
                                                          k=1
               or

                                                            h 1 ˆ e 1  h 2 ˆ e 2  h 3 ˆ e 3
                                                     1         ∂     ∂       ∂
                                              ~
                                          ∇× A =                                    .
                                                              ∂x 1  ∂x 2    ∂x 3

                                                          h 1 A(1)  h 2 A(2) h 3 A(3)
                                                  h 1 h 2 h 3
              I 43. Verify for orthogonal coordinates the relation
                                                    3                    "   2               #
                              h            i       X             h (i)  ∂   h (r)  ∂(h (m) A(m))
                                         ~
                                             e
                               ∇× (∇× A) · ˆ (i) =    e (i)jr e rsm
                                                               h 1 h 2 h 3 ∂x j  h 1 h 2 h 3  ∂x s
                                                   m=1
               1 Christian Otto Mohr (1835-1918) German civil engineer.
   185   186   187   188   189   190   191   192   193   194   195