Page 263 - Intro to Tensor Calculus
P. 263

257



               The vector field ~u (1)  can be eliminated from equation (2.4.37) by taking the divergence of both sides of the
               equation. This produces

                                           2
                                          ∂ ∇· ~u  (2)       2      (2)        2  (2)
                                         %         =(λ + µ)∇ (∇· ~u   )+ µ∇· ∇ ~u  .
                                             ∂t 2
                                                                                                            2
               The displacement field is assumed to be continuous and so we can interchange the order of the operators ∇
               and ∇ and write
                                                     2  (2)
                                                   ∂ ~u              2  (2)
                                              ∇· %        − (λ +2µ)∇ ~u    =0.
                                                     ∂t 2
               This last equation implies that
                                                     2
                                                    ∂ ~u (2)         2 (2)
                                                   %      =(λ +2µ)∇ ~u
                                                     ∂t 2
               and consequently, ~u (2)  is a vector wave which moves with the speed  p (λ +2µ)/%. Similarly, when the vector
               field ~u  (2)  is eliminated from the equation (2.4.37), by taking the curl of both sides, we find the vector ~u (1)
               also satisfies a wave equation having the form

                                                        2
                                                       ∂ ~u  (1)  2  (1)
                                                     %       = µ∇ ~u  .
                                                        ∂t 2
                                                 p                 (2)                                   (1)
               This later wave moves with the speed  µ/%. The vector ~u  is a compressive wave, while the wave u  is
               a shearing wave.
                   The exercises 30 through 38 enable us to write the Navier’s equations in Cartesian, cylindrical or
               spherical coordinates. In particular, we have for cartesian coordinates

                                                                 2
                                                2
                                                       2
                                         2
                                                                                          2
                                                                       2
                                                                             2
                                        ∂ u    ∂ v    ∂ w       ∂ u   ∂ u   ∂ u          ∂ u
                                 (λ + µ)(   +      +      )+ µ(     +     +     )+ %b x =%
                                        ∂x 2  ∂x∂y    ∂x∂z      ∂x 2  ∂y 2  ∂z 2         ∂t 2
                                                                 2
                                                 2
                                          2
                                                                                          2
                                                        2
                                                                             2
                                                                       2
                                         ∂ u    ∂ v   ∂ w       ∂ v   ∂ v   ∂ v          ∂ v
                                 (λ + µ)(     +     +      )+ µ(    +     +     )+ %b y =%
                                         ∂x∂y   ∂y 2  ∂y∂z      ∂x 2  ∂y 2  ∂z 2         ∂t 2
                                                2
                                         2
                                                       2
                                                                             2
                                                                                          2
                                                                       2
                                                                2
                                        ∂ u    ∂ v    ∂ w      ∂ w   ∂ w    ∂ w          ∂ w
                                (λ + µ)(    +      +    2  )+ µ(  2  +  2  +  2  )+ %b z =%  2
                                       ∂x∂z   ∂y∂z    ∂z       ∂x     ∂y    ∂z           ∂t
                   and in cylindrical coordinates

                                                        ∂   1 ∂        1 ∂u θ  ∂u z
                                                 (λ + µ)        (ru r )+    +       +
                                                        ∂r  r ∂r       r ∂θ    ∂z
                                     2                2      2                          2
                                    ∂ u r  1 ∂u r  1 ∂ u r  ∂ u r  u r  2 ∂u θ         ∂ u r
                                 µ(     +       +        +      −    −       )+ %b r =%
                                                                        2
                                                   2
                                    ∂r 2   r ∂r   r ∂θ 2    ∂z 2   r 2  r ∂θ           ∂t 2
                                                      1 ∂    1 ∂       1 ∂u θ  ∂u z
                                               (λ + µ)          (ru r )+    +       +
                                                      r ∂θ  r ∂r       r ∂θ    ∂z
                                     2                2      2                          2
                                    ∂ u θ  1 ∂u θ  1 ∂ u θ  ∂ u θ  2 ∂u r  u θ         ∂ u θ
                                 µ(     +       +        +      +        −   )+ %b θ =%
                                                   2
                                                                    2
                                    ∂r 2   r ∂r   r ∂θ 2    ∂z 2   r ∂θ    r 2         ∂t 2
                                                        ∂    1 ∂       1 ∂u θ  ∂u z
                                                 (λ + µ)        (ru r )+    +       +
                                                       ∂z   r ∂r       r ∂θ    ∂z
                                                  2                2      2             2
                                                 ∂ u z  1 ∂u z  1 ∂ u z  ∂ u z         ∂ u z
                                               µ(     +      +         +     )+ %b z =%
                                                                2
                                                 ∂r 2   r ∂r    r ∂θ 2   ∂z 2          ∂t 2
   258   259   260   261   262   263   264   265   266   267   268