Page 265 - Intro to Tensor Calculus
P. 265

259



                                                                                                            ~
               THEOREM        A general elastostatic solution of the equation (2.4.38) in terms of harmonic potentials φ,ψ
               is
                                                               ~
                                                                           ~
                                                             r
                                                ~u = grad (φ + ~ · ψ) − 4(1 − ν)ψ                     (2.4.39)
                           ~
               where φ and ψ are continuous solutions of the equations
                                                                               ~
                                                      ~
                                                 −%~ · b             2 ~      %b
                                                    r
                                           2
                                         ∇ φ =              and     ∇ ψ =                             (2.4.40)
                                                4µ(1 − ν)                  4µ(1 − ν)
                    r
               with ~ = x ˆ e 1 + y ˆ e 2 + z ˆ e 3 a position vector to a general point (x, y, z) within the continuum.
               Proof: First we write equation (2.4.38) in the tensor form
                                                         1            %
                                                u i,kk +     (u j,j ) ,i +  b i =0                    (2.4.41)
                                                       1 − 2ν         µ
               Now our problem is to show that equation (2.4.39), in tensor form,


                                                u i = φ ,i +(x j ψ j ) ,i − 4(1 − ν)ψ i               (2.4.42)

               is a solution of equation (2.4.41). Toward this purpose, we differentiate equation (2.4.42)

                                                                                                      (2.4.43)
                                              u i,k = φ ,ik +(x j ψ j ) ,ik − 4(1 − ν)ψ i,k
               and then contract on i and k giving


                                               u i,i = φ ,ii +(x j ψ j ) ,ii − 4(1 − ν)ψ i,i .        (2.4.44)

               Employing the identity (x j ψ j ) ,ii =2ψ i,i + x i ψ i,kk the equation (2.4.44) becomes

                                            u i,i = φ ,ii +2ψ i,i + x i ψ i,kk − 4(1 − ν)ψ i,i .      (2.4.45)

               By differentiating equation (2.4.43) we establish that

                                         u i,kk = φ ,ikk +(x j ψ j ) ,ikk − 4(1 − ν)ψ i,kk

                                              =(φ ,kk ) ,i +((x j ψ j ) ,kk ) − 4(1 − ν)ψ i,kk        (2.4.46)
                                                                  ,i
                                              =[φ ,kk +2ψ j,j + x j ψ j,kk ] − 4(1 − ν)ψ i,kk .
                                                                    ,i
               We use the hypothesis
                                                −%x j F j                    %F j
                                         φ ,kk =            and    ψ j,kk =        ,
                                               4µ(1 − ν)                  4µ(1 − ν)
               and simplify the equation (2.4.46) to the form


                                                 u i,kk =2ψ j,ji − 4(1 − ν)ψ i,kk .                   (2.4.47)

               Also by differentiating (2.4.45) one can establish that

                                   u j,ji =(φ ,jj ) ,i +2ψ j,ji +(x j ψ j,kk ) ,i − 4(1 − ν)ψ j,ji

                                            −%x j F j              %x j F j
                                       =              +2ψ j,ji +             − 4(1 − ν)ψ j,ji         (2.4.48)
                                           4µ(1 − ν)             4µ(1 − ν)
                                                     ,i                    ,i
                                       = −2(1 − 2ν)ψ j,ji .
   260   261   262   263   264   265   266   267   268   269   270