Page 361 - Intro to Tensor Calculus
P. 361

355



                                                   APPENDIX B
                         CHRISTOFFEL SYMBOLS OF SECOND KIND




                                                          2
                                                       1
                                                             3
                 1.  Cylindrical coordinates  (r, θ, z)= (x ,x ,x )
                                                         r ≥ 0                h 1 =1
                                             x = r cos θ
                                             y = r sin θ  0 ≤ θ ≤ 2π          h 2 = r
                                                         −∞ <z < ∞            h 3 =1
                                             z = z
                   The coordinate curves are formed by the intersection of the coordinate surfaces
                                                  2   2   2
                                                x + y = r ,         Cylinders
                                                                      Planes
                                                    y/x =tan θ
                                                      z = Constant        Planes.

                                              1                  2       2      1

                                                                     =       =
                                             22                 12       21     r
                                                  = −r
                                                     1
                                                        2
                                                          3
                 2.  Spherical coordinates  (ρ, θ, φ)=(x ,x ,x )
                                                          ρ ≥ 0              h 1 =1
                                          x = ρ sin θ cos φ
                                          y = ρ sin θ sin φ  0 ≤ θ ≤ π       h 2 = ρ
                                          z = ρ cos θ     0 ≤ φ ≤ 2π         h 3 = ρ sin θ
                   The coordinate curves are formed by the intersection of the coordinate surfaces

                                                 2   2    2   2
                                                x + y + z = ρ          Spheres
                                                     2    2     2
                                                    x + y =tan θz          Cones

                                                         y = x tan φ  Planes.


                                         1                          2       2     1
                                                                        =       =
                                             = −ρ
                                        22                         12      21     ρ
                                         1          2               3       3     1

                                                                        =       =
                                             = −ρ sin θ
                                        33                         13      31     ρ

                                         2                          3       3
                                                                        =       =cot θ
                                             = − sin θ cos θ
                                        33                         32      23
   356   357   358   359   360   361   362   363   364   365   366