Page 372 - Intro to Tensor Calculus
P. 372
366 INDEX
P
Parallel vector field 122
Rayleigh implusive flow 317
Pappovich-Neuber solution 263
Reciprocal basis 35, 38
Parabolic coordinates 70
Relative scalar 127
Parabolic cylindrical coordinates 69
Relative tensor 50, 121
Particle motion 190
Relative motion 202
Pendulum system 197, 210
Relativity 151
Perfect gas 283, 299
Relative motion 155
Permutations 6
Reynolds number 294
Phase space 302
Ricci’s theorem 119
Physical components 88, 91,93
Riemann Christoffel tensor 116, 129,139, 147
Piezoelectric 300
Riemann space 80
Pitch,roll, Yaw 209
Rectifying plane 188
Plane Couette flow 315
Rigid body rotation 199
Plane Poiseuille flow 316
Rotation of axes 85, 87, 107
Plane strain 263
Rules for indices 2
Plane stress 264
Poisson’s equation 329 S
Poisson’s ratio 212
Scalar 40, 43
Polar element 273
Scalar invariant 43, 62, 105
Polarization vector 333
Scalar potential 191
Polyads 48
Scaled variables 293
Potential energy 191
Second fundamental form 135, 145
Potential function 323
Second order tensor 47
Poynting’s vector 341
Shearing stresses 214
Pressure 283
Simple pulley system 193
Principal axes 183
Simple pendulum 194
Projection 35
Skew symmetric system 3, 31
Prolated Spheroidal coordinates 74
Skewed coordinates 60, 102
Pully system 194, 207
Solid angle 328
Q Space curves 130
Special tensors 65
Quotient law 53
Spherical coordinates 18, 43, 56, 69, 103,194
Stokes flow 318
R
Stokes hypothesis 285
Stokes theorem 24
Radius of curvature 130, 136
Straight line 60
Range convention 2, 3
Strain 218, 225, 228
Rate of deformation 281, 286
Strain deviator 279
Rate of strain 281