Page 368 - Intro to Tensor Calculus
P. 368
362
APPENDIX C
VECTOR IDENTITIES
The following identities assume that A, B, C, D are differentiable vector functions of position while
~ ~ ~ ~
f, f 1 ,f 2 are differentiable scalar functions of position.
1. A · (B × C)= B · (C × A)= C · (A × B)
~
~
~
~
~
~
~
~
~
2. A × (B × C)= B(A · C) − C(A · B)
~ ~ ~
~
~
~ ~ ~
~
3. (A × B) · (C × D)= (A · C)(B · D) − (A · D)(B · C)
~
~ ~
~ ~
~
~
~
~
~
~
~
4. A × (B × C)+ B × (C × A)+ C × (A × B)= 0
~
~
~
~
~
~
~
~
~
~
5. (A × B) × (C × D)= B(A · C × D) − A(B · C × D)
~
~
~ ~
~ ~ ~
~
~
~
~
~
= C(A · B × C) − D(A · B × C)
~ ~ ~
~ ~ ~
~
~
~ 2
6. (A × B) · (B × C) × (C × A)= (A · B × C)
~
~
~
~
~
~ ~
~
7. ∇(f 1 + f 2 )= ∇f 1 + ∇f 2
8. ∇· (A + B)= ∇· A + ∇· B
~
~
~
~
9. ∇× (A + B)= ∇× A + ∇× B
~
~
~
~
10. ∇(fA)= (∇f) · A + f∇· A
~
~
~
11. ∇(f 1 f 2 )= f 1 ∇f 2 + f 2 ∇f 1
12. ∇× (fA)=)∇f) × A + f(∇× A)
~
~
~
13. ∇· (A × B)= B · (∇× A) − A · (∇× B)
~
~
~
~
~
~
!
~ 2
|A|
14. (A ·∇)A = ∇ − A × (∇× A)
~
~
~
~
2
15. ∇(A · B)= (B ·∇)A +(A ·∇)B + B × (∇× A)+ A × (∇× B)
~
~
~
~
~ ~
~
~
~
~
16. ∇× (A × B)= (B ·∇)A − B(∇· A) − (A ·∇)B + A(∇· B)
~
~
~
~
~
~
~
~
~
~
2
17. ∇· (∇f)= ∇ f
18. ∇× (∇f)= 0
~
19. ∇· (∇× A)= 0
~
20. ∇× (∇× A)= ∇(∇· A) −∇ A
2 ~
~
~