Page 163 -
P. 163

4. Finite Difference Schemes For The Heat Equation
        150
        Exercise 4.9 Consider the problem
                   u t =4u xx − 10u + q(x, t)
                              u(  2 ,t)=b(t),
               u(  1 ,t)= a(t),
                u(x, 0) = f(x),
        where   2 >  1 are given constants, and a(t),b(t), and q(x, t) are given
        functions.
          (a) Derive an explicit scheme.
          (b) Derive an implicit scheme.   for   x ∈ (  1 ,  2 ),  t > 0,
          (c) Suppose
                                                     t
                                       t
                 1 = −2,    2 =3,  a(t)= e − 2,  b(t)= e +3,  f(x)=1 + x,
             and
                                             t
                                  q(x, t)=11e +10x.
             Show that
                                              t
                                     u(x, t)= e + x
             is an exact solution of the problem.

          (d) Implement the schemes derived in (a) and (b) and compare the results
             with the analytical solution derived in (c).




        Exercise 4.10 Consider the problem

              u t =(α(x, t)u x ) x + c(x, t)u x + q(x, t)  for  x ∈ (  1 ,  2 ),  t > 0,
          u(  1 ,t)= a(t),  u(  2 ,t)=b(t),
          u(x, 0) = f(x),

        where   2 >  1 are given constants, and a(t),b(t),α(x, t),c(x, t), and q(x, t)
        are given smooth functions.

          (a) Derive an explicit scheme.
          (b) Derive an implicit scheme.
   158   159   160   161   162   163   164   165   166   167   168