Page 164 -
P. 164

4.6 Exercises
                                                                      151
        Exercise 4.11 Consider the problem
              u t =(α(x, t)u x ) x + c(x, t)u x + q(x, t)u
                         u x (  2 ,t)=b(t),
         u x (  1 ,t)= a(t),
          u(x, 0) = f(x),
        where   2 >  1 are given constants, and a(t),b(t),α(x, t),c(x, t), and q(x, t)
        are given functions.
          (a) Derive an explicit scheme.
          (b) Derive an implicit scheme.          for  x ∈ (  1 ,  2 ),  t > 0,
        Exercise 4.12 Consider the equation
                                    u t = αu xx ,
        with Dirichlet boundary conditions. Here α> 0 is a given constant. We
        define an explicit scheme
           v  m+1  − v m  v m  − 2v m  + v m
            j      j      j−1     j    j+1
                      = α                     for  j =1,... ,n,  m ≥ 0,
               ∆t               ∆x 2
        and an implicit scheme

          v  m+1  − v m  v  m+1  − 2v  m+1  + v  m+1
           j      j              j
                    = α  j−1            j+1    for   j =1,... ,n,  m ≥ 0.
             ∆t                 ∆x 2
          (a) Derive a stability condition for the explicit scheme using the von
             Neumann method.

          (b) Show that the implicit scheme is unconditionally stable in the sense
             of von Neumann.



        Exercise 4.13 Consider the equation

                                     u t = u xx ,

        with Neumann-type boundary conditions and the following explicit scheme

           v  m+1  − v  m−1  v m  − 2v m  + v m
            j      j              j
                       =   j−1         j+1    for  j =1,... ,n,  m ≥ 0.
               2∆t              ∆x 2
          (a) Use the Taylor series to explain the derivation of this scheme.
   159   160   161   162   163   164   165   166   167   168   169