Page 137 - Introduction to Computational Fluid Dynamics
P. 137

P1: IWV
                           CB908/Date
                                                                                   May 20, 2005
            0521853265c05
                                        0 521 85326 5
                     116
                                                                 2D CONVECTION – CARTESIAN GRIDS
                               To simplify the evaluation, we introduce the following definitions:  12:28
                                                            x 1,w p E +  x 1,e p W
                                                    p   =                     ,                (5.41)
                                                     x 1 ,P
                                                               x 1,w +  x 1,e
                                                            x 2,s p N +  x 2,n p S
                                                    p x 2 ,P  =              ,                 (5.42)
                                                              x 2,s +  x 2,n
                                                           1
                                                     p =    (p x 1 ,P  + p x 2 ,P ),           (5.43)
                                                       P
                                                           2
                                                            x 1,e p EE +  x 1,ee p P
                                                   p x 1 ,E  =                ,                (5.44)
                                                               x 1,e +  x 1,ee
                                                            x 2,s p NE +  x 2,n p SE
                                                   p x 2 ,E  =                 ,               (5.45)
                                                               x 2,s +  x 2,n
                                                           1
                                                     p =    (p x 1 ,E  + p x 2 ,E ).           (5.46)
                                                       E
                                                           2
                               Substituting these definitions in Equation 5.40 and replacing p EE and p W in
                               favour of p E and p P , we can show that

                                                 1  p − p  P   p − p  P     1 ∂(p + p )
                                           l          l    l    l     l         l    l
                                                                 E
                                                      E
                                         ∂p
                                              =             +            =                ,    (5.47)
                                         ∂x 1     2   x 1,e      x 1,e      2   ∂x 1     e
                                             e
                               and, therefore, from Equation 5.39
                                                               l    l
                                                          1 ∂(p − p )     ∂p
                                                       =                =    sm    ,           (5.48)
                                                  R u f1,e
                                                          2    ∂x 1        ∂x 1
                                                                      e        e
                               where
                                                               1
                                                                        l
                                                                   l
                                                         p   sm  =  (p − p ).                  (5.49)
                                                               2
                               The suffix sm here stands for smoothing pressure correction.
                            8. Repeating items 4, 5, 6, and 7 at other cell faces, we obtain


                                            ∂p                  ∂p                  ∂p
                                         =    sm    ,        =    sm    ,        =    sm    .  (5.50)
                                    R u f1,w            R u f2,n            R u f2,s
                                            ∂x 1                ∂x 2                ∂x 2
                                                 w                   n                   s
                               Thus, substituting these equations in Equation 5.31, it follows that

                                                        ∂p sm            ∂p   sm

                                              ˙ m R = AE     x 1 − AW          x 1

                                                        ∂x 1      e       ∂x 1      w
                                                          ∂p               ∂p
                                                   + AN     sm   x 2 − AS    sm   x 2 .        (5.51)



                                                           ∂x 2            ∂x 2
                                                                   n                s
                            9. In evaluating coefficients AE, AW, AN, and AS, we need AP coefficients
                               at the cell faces (see Equation 5.29). However, these can be evaluated by
   132   133   134   135   136   137   138   139   140   141   142