Page 298 - Introduction to Computational Fluid Dynamics
P. 298

P1: ICD
                                                                                   May 20, 2005
                            CB908/Date
                                         0 521 85326 5
            0521853265appa
                        APPENDIX A. DERIVATION OF TRANSPORT EQUATIONS
                        Thus, with respect to Figure A.1, we can write the contributions in the x 1 direction  13:6 277
                        as
                                      ∂(ρ m  Vu 1 )
                            Mom ac =             ,                                         (A.8)
                                          ∂t
                            Mom in = (ρ m  x 2  x 3 u 1 )u 1 | x 1  + (ρ m  x 3  x 1 u 2 )u 1 | x 2
                                                           ,                               (A.9)
                                     + (ρ m  x 1  x 2 u 3 )u 1 | x 3
                            Mom out = (ρ m  x 2  x 3 u 1 )u 1 | x 1 + x 1  + (ρ m  x 3  x 1 u 2 )u 1 | x 2 + x 2
                                                              ,
                                     + (ρ m  x 1  x 2 u 3 )u 1 | x 3 + x 3
                                F cv =−(σ 1 | x 1  − σ 1 | x 1 + x 1  ) x 2  x 3 + (τ 21 | x 2 + x 2  − τ 21 | x 2  ) x 3  x 1
                                                         ) x 1  x 2 + ρ m B 1  V,         (A.10)
                                     + (τ 31 | x 3 + x 3  − τ 31 | x 3
                        where B 1 is the body force per unit mass, the σs are tensile normal stresses, and τs
                        are shear stresses. Now, dividing by  V and letting  x 1 , x 2 , x 3 → 0, it can be
                        shown that


                        x 1 Direction Momentum Equation
                                     ∂(ρ m u 1 )  ∂(ρ m u 1 u 1 )  ∂(ρ m u 2 u 1 )  ∂(ρ m u 3 u 1 )
                                             +            +            +
                                        ∂t         ∂x 1         ∂x 2         ∂x 3
                                                ∂(σ 1 )  ∂(τ 21 )  ∂(τ 31 )
                                             =       +       +        + ρ m B 1 .         (A.11)
                                                ∂x 1     ∂x 2    ∂x 3
                        A similar exercise in the x 2 and x 3 directions will yield


                        x 2 Direction Momentum Equation
                                     ∂(ρ m u 2 )  ∂(ρ m u 1 u 2 )  ∂(ρ m u 2 u 2 )  ∂(ρ m u 3 u 2 )
                                             +            +            +
                                        ∂t         ∂x 1         ∂x 2         ∂x 3
                                                ∂(τ 12 )  ∂(σ 2 )  ∂(τ 32 )
                                             =        +      +        + ρ m B 2 .         (A.12)
                                                 ∂x 1    ∂x 2    ∂x 3

                        x 3 Direction Momentum Equation
                                     ∂(ρ m u 3 )  ∂(ρ m u 1 u 3 )  ∂(ρ m u 2 u 3 )  ∂(ρ m u 3 u 3 )
                                             +            +            +
                                        ∂t         ∂x 1         ∂x 2         ∂x 3
                                                ∂(τ 13 )  ∂(τ 23 )  ∂(σ 3 )
                                             =        +       +       + ρ m B 3 .         (A.13)
                                                 ∂x 1    ∂x 2    ∂x 3
                        A few comments on these equations are now in order:

                        1. By making use of Equation A.5, the left-hand sides of Equations A.11, A.12,
                           and A.13 can be replaced by ρ m D(u 1 )/Dt, ρ m D(u 2 )/Dt, and ρ m D(u 3 )/Dt,
   293   294   295   296   297   298   299   300   301   302   303