Page 265 - Introduction to Information Optics
P. 265
250 4. Switching with Optics
4.32 D. A. B. Miller, 1990, "Quantum-Well Self-Electro-Optic Effect Devices,"Opf. Quant. Elec-
tron., 22, S61.
4.33 A. L. Lentine and D. A. B. Miller, 1993, "Evolution of the SEED Technology: Bistable Logic-
Gates to Optoelectronic Smart Pixels," IEEE J. Quant. Electron., QE-29, 655.
4.34 D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, 2000, "Physics in the Whirlwind of Optical
Communications," Physics Today, September, 30.
4.35 K. Kawano et al, 1997, "Polarization-Insensitive Traveling-Wave Electrode Electroabsorp-
lion (TW-EA) modulator with bandwidth over SOGHz and driving voltage Less Than 2V
Electron Lett., 33, 1580; V. Kaman, 1999, "High-Speed Operation of Traveling-Wave
Electroabsorption Modulator," Electron. Lett., 35, 993.
4.36 11. Takeuchi et al., 1997, "NRZ Operation at 40 Gb/s of a Compact Module Containing an
MQW Electroabsorption Modulator Integrated with a DFB Laser," IEEE Photon. Tech.
Lett., 9, 572.
4.37 K. D. Wise, Ed., 1998, (MEMS), IEEE Proceedings, 86, 1687.
4.38 M, C. Wu, N. F. De Rooij, and H. Fujita, Ed., 1999, IEEE J. Selected Topics Quant. Electron.,
5, 2.
4.39 N. Maluf, An Introduction to Microelectromechanicul Systems Engineering, Artech House, UK.
1999.
4.40 O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, 1992, "Deformable Grating Optical
Modulator," Opt. Lett., 17, 688.
4.41 L. J. Hornbeck, 1998, "From Cathode Rays to Digital Micrornirrors: A History of Electronic
Projection Display Technology," TI Technical J., July September issue, 7.
4.42 S.-S. Lee, L.-S. Huang, C.-J. Kim, and M. C. Wu, 1999, "Free-Space Fiber-Optic Switches
Based on MEMS Vertical Torsion Mirrors," J. Lightw. TechnoL, 17, 7.
4.43 J. Fouquet et al., 1997, "Total Internal Reflection Optical Switches Employing Thermal
Activation," US Patent 5,699,462; J. Fouquet et al., 2000, "Fabrication of a Total Internal
Reflection Optical Switch with Vertical Fluid Fill-Holes," LJS Patent 6,055,344.
EXERCISES
4.1 Write a computer program to solve Eqs. (4.3) and (4.5), and generate
curves similar to Fig. 4.4. Assume the nonlinear medium in the etalon is
6
2
GaAs with « 2 = 2 x l(T cm /W.
4.2 Study the effect of loss on the performance of a nonlinear etalon. Assume
l
the nonlinear medium has a loss coefficient of a (cm ~ ). Derive the results
similar to Eqs. (4.3), (4.4), and (4.5).
4.3 Derive Eq. (4.8) from Eq. (4.7) using the initial conditions A(Q) = I, and
B(0) =0.
4.4 Solve Eq. (4.7) using initial condition A(Q) = 1/2 and B(0) = 1/2.
4.5 Show that Eq. (4.10) reduces to Eq. (4.8) when P « P c. (Hint: Find the
property of the elliptic function cn(x m) for special m values.)
4.6 Study the effect of loss on the performance of an NLDC. Assume the
1
nonlinear medium has a loss coefficient of a = 1 cm"" , and coupling
length L c — 1 cm. Obtain the results similar to Fig. 4.9.
4.7 Derive Eq. (4.12) from Eq. (4.11) assuming E l — E- m and E 2 = 0.