Page 310 - Introduction to Information Optics
P. 310
Exercises 295
5.1J J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1968.
5.12 I, Daubechie, 1988, "Orthogonal Bases of Compactly Supported Wavelets," Comm. Pure Appi
Math., vol. 41, 909-996.
5.13 C. K. Chui, An Introduction to Wavelets, Academic, San Diego, 1992.
5.14 Y. Sheng, "Wavelet Transform," in The Transforms and Applications Handbook, A. D,
Poulariskas, ed. 2nd edition, CRC and IEEE Press, Boca Raton, 2000.
5.15 Y. Li, H. Szu, Y. Sheng, and H. J. Caulfield, 1996, "Wavelet Processing and Optics."
Proceedings of the IEEE, vol. 84 no. 5, 720-732.
5.16 G. Kaiser, A Friendly Guide to Wavelet, Birkhauser, Boston, 1994.
5.17 Y. Sheng, S. Deschens, and J. Caulfield, 1998, "Monochromatic Electromagnetic Wavelet and
Huygens Principle," Applied Optics, Vol. 27, no. 5, 828-833.
5.18 J. D. Jackson, Classical Electrodynamics, 3rd edn., John Wiley & Sons, New York, 1999.
5.19 J. Y. Lu and F. Greenleaf, 1992, "Nondiffraction X-Wave-Exact Solution to Free-Space Scalar
Wave Equation and Their Finite Aperture Realization," IEEE Trans. Ultra. Ferro. Freq.
Control, vol. 39, no. 1, 19-31.
5.20 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions," Dover, New York, 1972,
5.21 H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, 1994, "Convolution, Filtering, and
Multiplexing in Fractional Fourier Domains and Their Relation to Chirp and Wavelet
Transforms," J. Opt. Soc. Am. A, vol.11, no. 2, 547 559.
5.22 H. H. Barrett, "The Radon Transform and Its Applications," in Progress in Optics XXI. E.
Wolf, ed., Elsevier, New York, 1984.
5.23 H. H. Barrett and W. Swindell, Radiology Imaging, Academic, New York, 1981.
5.24 E. W. Hasen, "Theory of Circular Harmonic Image Reconstruction," J. Opt. Soc. Am. vol. 71.
no. 4, 304 308.
5.25 O. Bryngdahl, 1974, "Geometrical Transformations in Optics," J. Opt. Soc. Am. 64, 1092.
5.26 J. N. Cederquist and A. M. Tai, 1984, "Computer-Generated Holograms for Geometric
Transformations," Appl. Opt. 23, 3099.
5.27 D. Wang, A. Peer, A. A. Friesem, and A. W. Lohmann, 2000, "General Linear Optical
Coordinate Transformations," J. Opt. Soc. Am. A, 17, 1864.
5.28 J. R, Leger and W. C. Goltsos, 1992, "Geometric Transformation of Linear Diode-Laser
Arrays for Longitudinal Pumping of Solid-State Lasers," IEEE J. Quantum Electron. 28 1088.
5.29 Y. Arieli, N. Eisenberg, A. Lewis, and I. Glaser, 1997, "Geometrical-Transformation Ap-
proach to Optical Two-Dimensional Beam Shaping," Applied Optics, 36, 9129.
5.30 D. Casasent and D. Psaltis, 1976, "Position, rotation, and scale invariant optical correlation."
Appl. Opt. Vol. 15, no. 7, 1795.
5.31 J. P. Plumey and G. Granet, 1999, "Generalization of the Coordinate Transformation
Method with Application to Surface-Relief Gratings," J. Opt. Soc. Am. A, 16. 508.
5.32 M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1965.
5.33 T. Szopiik, "Line Detection and Directional Analysis of Images," in Optical Processing and
Computing, H. H. Arsenault, T. Szoplic, and B. Macukow, eds., Academic, New York, 1989.
5.34 P. V. C. Hough, "Methods and Means for Recognizing Complex Patterns," U.S. Patent
3-069-654, 1962.
5.35 F.T.S. Yu and S. Jutamulia, Optical Signal Processing, Computing, and Neural Networks, John
Wiley, New York, 1992, pp. 102-106.
EXERCISES
5.1 Demonstrate the inverse Fresnel transform in Eq. (5.3) using the defini-
tion of the Fresnel transform in Eq. (5.2).