Page 36 - Introduction to Information Optics
P. 36

1.4. Band-limited Analysis              2 !

          Let us provide an example to show that the uncertainty relation is indeed
       relevant for information transmission through a communication channel. We
       assume a short symmetric pulse of duration of At, as applied to the channel;
       that is.


                                         f(tl
                            f(t) =                                    (1.73)
                                         0,

       where
                                    /(O) ^ f(t).

        The corresponding signal spectrum can be obtained as given by




       where J* denotes the Fourier transformation.
          Let us define a nominal signal duration At and a nominal signal bandwidth
       which are equivalent to the duration of a rectangular pulse of amplitude /(O)
       and a rectangular pulse spectrum F(0), as given by


                                Ar/(0)      f(t)dt,                   (1.74)
       and


                               AvF(O) 4      F(v)dv.                  •1.75)


       From the definition of the Fourier transformation, the nominal quantities can
       be written as


                                                                      (1.76)


                                                                     (1.77)


       for which we have the lower bound condition of the uncertainty relations; that
       is,
                                                                      (1.78)
   31   32   33   34   35   36   37   38   39   40   41