Page 344 - Sami Franssila Introduction to Microfabrication
P. 344

Vacuum and Plasmas 323



           Time evolution of pressure can be written as  and the ultimate pressure that can be reached is then
                                                       given by
               dp/dt = (dN/dt)kT/V = −nSkT/V    (32.7)                p ult = kTnC/S       (32.12)
           which can be solved to yield                                     15 −1
                                                       If the leak rate is 3.8 × 10 s  and 1000 L/s pump
                                                       is employed, the base pressure is ca. 1.6 × 10 −5  Pa or
                        p = p 0 exp(−St/V )     (32.8)
                                                       1.2 × 10 −7  torr. Ultimate base pressures are produced by
           Pressure drops exponentially over time with character-  cryopumps or getter pumps, with values in the range of
           istic time τ proportional to V/S.           10 −11  torr. MBE systems operate at such base pressures.
                                   5
             Low to medium vacuum (10 –0.1 Pa) can be pro-  The theoretical maximum pumping speed is derived
           duced by rotary vane pumps, rotary piston pumps,  from kinetic theory as
           roots blowers and sorption pumps. High vacuum
           (0.1–10 −4  Pa) is produced by capture pumps (cryop-       S = (A/4)v ave       (32.13)
           umps, getter pumps) and momentum-transfer pumps
           (turbomolecular pumps, diffusion pumps). Capture  where A is the inlet area and v ave =  (8kT/πm) is the
           pumps capture and hold all the gas and therefore they  molecular average speed. This represents the case in
           need forepumps because of limited holding capacity;  which all atoms impinge only in one direction, with no
           and they have to be regenerated regularly. Momentum-  return flux. Real life pumping speeds of diffusion pumps
           transfer pumps, on the other hand, require roughing  can be 50% of the theoretical maximum value, but
           pumps because they cannot start operation at ambi-  rotary pumps fare much worse. Pumping speed is usually
           ent pressure.                               specified for nitrogen, and light gases hydrogen and
                                                       helium are difficult to pump. Water vapour is difficult
             Crossover is the pressure at which the high vacuum
                                                       to remove because its desorption rate is very low.
           pump is connected to the chamber. For capture pumps,
           this is calculated from torr-litre specification (Pa-L/s),  Gases will adsorb on surfaces when energetically
           by dividing with the chamber volume. Capture pumps  favourable surface sites are available. Adsorbed gases
           hold the pumped material, and therefore knowledge of  are ‘surface gases’ as opposed to ‘volume gases’. The
           chamber volume is essential. Capture pumps often bring  latter are related to chamber volume; the former to
           the pressure down faster than roughing pumps, because  chamber wall area. Large surface area equals large
           the pumping speed of a mechanical roughing pump gets  quantity of adsorbed gases. The analogy is with water in
           worse at lower pressures.                   a bucket: initially each cup will decrease the water level
             Ultimate pressure that can be reached by a pumping  in the bucket by a cupful until almost all the water is
           system is determined by pumping speed and vacuum  removed. When almost all water has been removed, the
                                                       remaining water is found in cusps that are smaller than
           chamber leak rate. We need the concept of conductance
                                                       the cup, and therefore each removal cycle removes less
           to estimate this: conductance is flow divided by gas
           density difference on the two sides of the vacuum  than a cupful. This points to the importance of surface
           system. Its unit is thus cubic metre per second.  finish in vacuum chamber manufacturing. Pumping can
           Conductances add like capacitors in series:  be limited by surface gas desorption. It can be helped
                                                       by heating or UV radiation.
                      1/C tot = (1/C 1 ) + (1/C 2 )  (32.9)  Ultra-high vacuum (UHV) chamber materials and
                                                       surfaces, valves, and all components must be compat-
           Maximum conductance is limited by the orifice opening,  ible with baking, which is done to outgas the adsorbed
           and further limited by tube conductance that leads from  species. UHV systems are baked at elevated tempera-
           the orifice.                                 tures; MBE systems, for instance, are baked at 200 C
                                                                                               ◦
             The number of atoms leaking in from the outside is  for 24 h, every 30 days.
           given by                                      The pressure can be brought down by a multiple-stage
                       dN/dt = J = −C n        (32.10)  vacuum system. The sputtering system may have three
                                                       levels of vacuum:
           For high vacuum,  n is equal to the density of the
           gas outside the system (approximating high vacuum
                                                       – vacuum cassette lock, pumped down to 10 to
           with n = 0), which, for STP conditions, is n = 2.4 ×
            25
                −3
           10 m . Identifying flux J as the leak, we get from  100 mtorr by a mechanical pump;
           the ideal gas law (Equation 32.6)           – transfer chamber, pumped down to 0.01 mtorr by
                                                          a turbopump;
                       pS = kTJ leak = kTnC    (32.11)  – process chamber, cryopumped to 10 −6  mtorr.
   339   340   341   342   343   344   345   346   347   348   349