Page 327 - Materials Chemistry, Second Edition
P. 327

326                         15. Barriers identification and prioritization

                 TABLE 15.A5 The relative influences of the influential factors on EN 1 .

                                      The most influential: T 2            The least influential: SM 3
                 EN 1            T 1                T 2                SM 1               SM 3
                 BO              (3/2, 2, 5/2)      (1,1,1)            (5/2, 3, 7/2)      (7/2, 4, 9/2)
                 OW              (5/2, 3, 7/2)      (7/2, 4, 9/2)      (2/3, 1, 3/2)      (1,1,1)
                 Weights         0.2927             0.4546             0.1430             0.1097
                  ∗          ξ ∗  0:4273
                 ξ ¼0.4273, CR ¼  ¼  ¼ 0:0531 < 0:10
                             CI  8:04
                 TABLE 15.A6  The relative influences of the influential factors on SM 1 .

                                     The most influential: SM 2
                 SM 1            SM 2               SM 3               The least influential: SM 3
                 BO              (1,1,1)            (3/2, 2, 5/2)
                 OW              (3/2, 2, 5/2)      (1,1,1)
                 Weights         0.7496             0.2503
                  ∗       ξ ∗  0
                 ξ ¼0, CR ¼  ¼  ¼ 0 < 0:10
                         CI  5:29
                 TABLE 15.A7  The relative influences of the influential factors on SM 2 .

                                     The most influential: SM 3
                 SM 2            SM 1               SM 3               The least influential: SM 1
                 BO              (2/3, 1, 3/2)      (1,1,1)
                 OW              (1,1,1)            (2/3, 1, 3/2)
                 Weights         0.5015             0.4985
                  ∗       ξ ∗  0
                 ξ ¼0, CR ¼  ¼  ¼ 0 < 0:10
                         CI  3:80
                 References

                 Balfaqih, H., Al-Nory, M.T., Nopiah, Z.M., Saibani, N., 2017. Environmental and economic performance assessment
                   of desalination supply chain. Desalination 406, 2–9.
                 Chen, S.H., Hsieh, C.H., 2000. Representation, ranking, distance, and similarity of LR type fuzzy number and appli-
                   cation. Aus. J. Intell. Process. Syst. 6 (4), 217–229.
                 Chen, L., Ren, J., 2018. Multi-attribute sustainability evaluation of alternative aviation fuels based on fuzzy ANP and
                   fuzzy grey relational analysis. J. Air Transp. Manag. 68, 176–186.
                 Cheng, C.H., Lin, Y., 2002. Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria
                   evaluation. Eur. J. Oper. Res. 142 (1), 174–186.
                 Fiorenza, G., Sharma, V.K., Braccio, G., 2003. Techno-economic evaluation of a solar powered water desalination
                   plant. Energy Convers. Manag. 44 (14), 2217–2240.
                 Gude, V.G., Nirmalakhandan, N., Deng, S., 2010. Renewable and sustainable approaches for desalination. Renew.
                   Sust. Energ. Rev. 14 (9), 2641–2654.
                 Guo, S., Zhao, H., 2017. Fuzzy best-worst multi-criteria decision-making method and its applications. Knowl.-Based
                   Syst. 121, 23–31.
   322   323   324   325   326   327   328   329   330   331   332