Page 37 - Lignocellulosic Biomass to Liquid Biofuels
P. 37

Fundamentals of lignocellulosic biomass  15


              [10] P.T. Martone, J.M. Estevez, F. Lu, K. Ruel, M.W. Denny, C. Somerville, et al.,
                 Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture,
                 Curr. Biol. 19 (2009) 169 175.
              [11] A.K. Chandel, O.V. Singh, Weedy lignocellulosic feedstock and microbial metabolic
                 engineering: advancing the generation of ‘Biofuel’, Appl. Microbiol. Biotechnol. 89
                 (2011) 1289 1303.
              [12] J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany, Environmental, economic, and
                 energetic costs and benefits of biodiesel and ethanol biofuels, Proc. Natl. Acad. Sci.
                 U.S.A. 103 (2006) 11206 11210.
              [13] R.D. Perlack, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The
                 Technical Feasibility of a Billion-Ton Annual Supply, Oak Ridge National
                 Laboratory, 2005.
              [14] P. Mäki-Arvela, E. Salminen, T. Riittonen, P. Virtanen, N. Kumar, J.-P. Mikkola,
                 The challenge of efficient synthesis of biofuels from lignocellulose for future renew-
                 able transportation fuels, Int. J. Chem. Eng. 2012 (2012).
              [15] R. Sun, Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels:
                 Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose, Elsevier, 2010.
              [16] L. Viikari, A. Suurnäkki, S. Grönqvist, L. Raaska, A. Ragauskas, Forest Products:
                 Biotechnology in Pulp and Paper Processing, Encyclopedia of Microbiology,
                 Academic Press, 2009, pp. 80 94.
              [17] F.M. Gírio, C. Fonseca, F. Carvalheiro, L.C. Duarte, S. Marques, R. Bogel-èukasik,
                 Hemicelluloses for fuel ethanol: a review, Bioresour. Technol. 101 (2010)
                 4775 4800.
              [18] P. Fardim, N. Durán, Modification of fibre surfaces during pulping and refining as
                 analysed by SEM, XPS and ToF-SIMS, Colloids Surf., A: Physicochem. Eng.
                 Aspects 223 (2003) 263 276.
              [19] Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a
                 review, Bioresour. Technol. 83 (2002) 1 11.
              [20] F.-X. Collard, M. Carrier, J. Görgens, Fractionation of Lignocellulosic Material With
                 Pyrolysis Processing, Biomass Fractionation Technologies for a Lignocellulosic
                 Feedstock Based Biorefinery, Elsevier, 2016, pp. 81 101.
              [21] Z. Chen, C. Wan, Ultrafast fractionation of lignocellulosic biomass by microwave-
                 assisted deep eutectic solvent pretreatment, Bioresour. Technol. 250 (2018)
                 532 537.
              [22] M.T. Amiri, G.R. Dick, Y.M. Questell-Santiago, J.S. Luterbacher, Fractionation of
                 lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin, Nat.
                 Protoc. 14 (2019) 921 954.
              [23] P.M. Grande, J. Viell, N. Theyssen, W. Marquardt, P.D. de María, W. Leitner,
                 Fractionation of lignocellulosic biomass using the OrganoCat process, Green Chem.
                 17 (2015) 3533 3539.
              [24] N. Smichi, Y. Messaoudi, M. Gargouri, Lignocellulosic biomass fractionation: pro-
                 duction of ethanol, lignin and carbon source for fungal culture, Waste Biomass
                 Valor. 9 (2018) 947 956.
              [25] H. Cheng, L. Wang, Lignocelluloses Feedstock Biorefinery as Petrorefinery
                 Substitutes, Biomass Now-Sustainable Growth and Use, IntechOpen, 2013.
              [26] S. Aziz, K. Sarkanen, Organosolv pulping—a review, Tappi J. 72 (1989) 169 175.
   32   33   34   35   36   37   38   39   40   41   42