Page 260 - MATLAB an introduction with applications
P. 260

Numerical Methods ———  245


                   A = [6 3 6;2 3 3;1 2 2];
                   b = [30;17;11];
                   N = max(size(A))


                   % Perform Gaussian Elimination
                    for j = 2:N,
                        for i = j:N,
                           m = A(i, j–1)/A(j–1, j–1);
                           A(i,:) = A(i,:) – A(j–1,:) m;
                                                     *
                           b(i) = b(i) –m*b(j–1);
                        end
                    end
                   disp(‘Upper triangular form of given matrix is =’)
                   disp(A)
                   disp(‘b =’)
                   disp(b)


                   % BACK-SUBSTITUTION
                   % Perform back substitution
                    x = zeros(N,1);
                    x(N) = b(N)/A(N,N);
                    for j = N–1:–1:1,
                      x(j) = (b(j)–A(j,j+1:N) x(j+1:N))/A(j,j);
                                                *
                    end
                   disp(‘final solution is’);
                   disp(x);
                   disp(‘matlab solution is’);
                   x = inv(A) b
                              *

                   OUTPUT is given below:
                   N =
                         3
                   Upper triangular form of given matrix is =
                         6.0000      3.0000      6.0000
                         0           2.0000      1.0000
                         0           0           0.2500
                   b =
                        30.0000
                         7.0000
                         0.7500
   255   256   257   258   259   260   261   262   263   264   265