Page 383 - MATLAB an introduction with applications
P. 383

368 ———  MATLAB: An Introduction with Applications

                               0.850000        0.016805        0.358166
                               0.900000        0.019458        0.401200
                               0.950000        0.022246        0.446618
                               1.000000        0.025144        0.494409

                                      2
                                                                                  DOF-1
                                     1.8                                          DOF-2

                                     1.6
                                     1.4
                                    Displacement(m)  0.8
                                     1.2
                                      1



                                     0.6
                                     0.4

                                     0.2
                                      0
                                       0    0.2  0.4  0.6  0.8  1   1.2  1.4  1.6  1.8   2
                                                              Time(s)
                                                   Fig. E6.13 MATLAB output

                   Example E6.14:  Solve Example E6.11 using the Houbolt method.
                   Solution: In Houbolt’s method for obtaining first two displacements X∆t and X2t, central difference method
                   is employed. Then three step Houbolt’s algorithm is used. Velocities and accelerations are likewise defined.
                   Complete MATLAB program is given below:
                   K=[21 –1;–1 1];
                   M=[1 0;0 10];
                   C=[0.5 –0.1;–0.1 0.1];
                   dt=0.05;T=2;
                   X0=[0;0];X0d=[0;0];F=[0;10];
                   t=[0:dt:T];
                   X(:,2)=X0;
                   X0dd=inv(M)*(F–C*X0d–K*X0);
                   % USING CENTRAL DIFFERENCE METHOD TO OBTAIN PREVIOUS 3 VALUES
                   Xprev=X0–(dt*X0d)+((dt^2)*(X0dd/2));
                   a0=1/dt^2;a1=1/(2*dt);a2=2*a0;
                   mbar=(a0*M)+(a1*C);
                   kbar=(K–a2*M);
                   cbar=(a0*M–a1*C);
   378   379   380   381   382   383   384   385   386   387   388