Page 138 - MEMS and Microstructures in Aerospace Applications
P. 138

Osiander / MEMS and microstructures in Aerospace applications  DK3181_c007 Final Proof page 127 1.9.2005 12:03pm








                         7       Microtechnologies for

                                 Science Instrumentation


                                 Applications




                                Brian Jamieson and Robert Osiander



                    CONTENTS

                    7.1  Introduction.................................................................................................. 127
                    7.2  Electromagnetic Field and Particle Detection for Space Science.............. 128
                        7.2.1 Plasma Particle Spectrometers......................................................... 129
                        7.2.2 Magnetometers and Electric Field Detectors .................................. 132
                    7.3  Telescopes and Spectrometers..................................................................... 134
                        7.3.1 The James Webb Space Telescope Near-IR Spectrograph............. 134
                        7.3.2 Adaptive Optics Applications.......................................................... 138
                        7.3.3 Spectrometer Applications............................................................... 139
                        7.3.4 Micromachined Bolometers............................................................. 141
                    7.4  MEMS Sensors for In Situ Analysis........................................................... 141
                        7.4.1 Micromachined Mass Spectrometers............................................... 142
                        7.4.2 Magnetic Resonance Force Microscopy.......................................... 142
                    7.5  Conclusion ................................................................................................... 142
                    References............................................................................................................. 143



                    7.1 INTRODUCTION
                    Within the last decade, public support for large-scale space missions has slowly
                    decreased and there has been a strong incentive to make them ‘‘faster, better,
                    cheaper.’’ Reducing the development time for space instruments can have the
                    advantage of having the latest, most capable technology available, but it runs the
                    risk of reducing the reliability through lack of testing. The major cost saver for
                    space missions is a reduction of launch cost by reducing the weight of the spacecraft
                    and the instrument. Microelectromechanical systems (MEMS) provide an oppor-
                    tunity to reduce the weight of the scientific instruments.
                       The science instrument is, apart from commercial and government communi-
                    cations satellites, the most important aspect of the spacecraft. There are a number of
                    insertion points for MEMS into scientific instruments based on the advantages of
                    microsystems. One example is thermal transport. The small size of a MEMS device,
                    and the small features with high aspect ratios allow mechanically strong structures

                                                                                    127

                   © 2006 by Taylor & Francis Group, LLC
   133   134   135   136   137   138   139   140   141   142   143