Page 189 - MEMS and Microstructures in Aerospace Applications
P. 189
Osiander / MEMS and microstructures in Aerospace applications DK3181_c008 Final Proof page 179 1.9.2005 12:05pm
Microelectromechanical Systems for Spacecraft Communications 179
56. Kim, H.-T. et al., A compact V-band 2-bit reflection-type MEMS phase shifter, IEEE
Microwave Guided Wave Letters, 12 (9), 324, 2002.
57. Park, J.Y. et al., V-band reflection-typ phase shifters using micromachined CPW coupler
and RF switches, Journal of Microelectromechanical Systems, 11 (6), 808, 2002.
58. Malczewski, A. et al., X-band RF MEMS phase shifters for phased array applications,
IEEE Microwave Guided Wave Letters, 9 (12), 517, 1999.
59. Lin, L., Howe, R.T., and Pisano, A.P., Microelectromechanical filters for signal pro-
cessing, Journal of Microelectromechanical Systems, 7 (3), 286, 1998.
60. Nguyen, C.T.-C., Frequency-selective MEMS for miniaturized low-power communi-
cations devices, IEEE Transactions on Microwave Theory and Techniques, 47 (8),
1486, 1999.
61. Lubecke, V.M., Barber, B.P., and Arney, S., Enabling MEMS technologies for com-
munications systems, Proceedings — Device and Process Technologies for MEMS and
Microelectronics II, 4592, 257, 2001.
62. Fan, L. et al., Universal MEMS platforms for passive RF components: suspended
inductors and variable capacitors, Proceedings — MEMS, 98, The Eleventh Annual
Workshop on Micro Electro Mechanical Systems, 29, 1998.
63. Dec, A. and Suyama, K., Micromachined electro-mechanically tunable capacitors and
their applications to RF IC’s, IEEE Transactions on Microwave Theory and Tech-
niques, 46 (12), 2587, 1998.
64. Feng, Z. et al., Design and modeling of RF MEMS tunable capacitors using electro-
thermal actuators, 1999 IEEE MTT-S International Microwave Symposium Digest, 4,
1507, 1999.
65. Vinoy, K.J. and Varadan, V.K., Design of reconfigurable fractal antennas and RF-
MEMS for space-based systems, Smart Materials and Structures, 10 (6), 1211, 2001.
66. Anagnostou, D. et al., Fractal antenna with RF MEMS switches for multiple frequency
applications, Proceedings — Antennas and Propagation Society International Sympo-
sium, 2, 22, 2002.
67. Werner, D.H. and Ganguly, S., An overview of fractal antenna engineering research,
IEEE Antennas and Propagation Magazine, 45 (1), 38, 2003.
68. Chu, P.B., Lee, S.-S., and Park, S., MEMS: the path to large optical crossconnects,
IEEE Communications Magazine, 80, 2002.
69. De Dobbelaere, P. et al., Digital MEMS for optical switching, IEEE Communications
Magazine, 88, 2002.
70. Bishop, D. et al., Silicon micromachines for lightwave networks: can little machines
make it big? Annual Device Research Conference Digest. 58th Device Research
Conference (58th DRC), Jun 19–Jun 21 2000, 7, 2000.
71. Wu, M.C., Fan, L., and Lee, S.-S., Optical MEMS: huge possibilities for lilliputian-
sized devices, Optics and Photonics News, 9 (6), 25, 1998.
72. Bryzek, J., Petersen, K., and McCulley, W., Micromachines on the march, IEEE
Spectrum, 31 (5), 20, 1994.
73. Suhonen, M. et al., Scanning microelectromechanical mirror for fine-pointing units of
intersatellite optical links, Smart Materials and Structures, 10, 1204, 2001.
74. www.memsoptical.com
75. Solgaard, O. et al., Microoptical phased arrays for spatial and spectral switching, IEEE
Communications Magazine, 41 (3), 96, 2003.
76. Sumida, D.S. et al., All-optical, true-time-delay photonics network for high-bandwidth,
free-space laser communication applications, Proceedings — Free-Space Laser Com-
munication Technologies XVI, 5338, 214, 2004.
© 2006 by Taylor & Francis Group, LLC