Page 188 - MEMS and Microstructures in Aerospace Applications
P. 188
Osiander / MEMS and microstructures in Aerospace applications DK3181_c008 Final Proof page 178 1.9.2005 12:05pm
178 MEMS and Microstructures in Aerospace Applications
34. Pacheco, S., Nguyen, C.T., and Katehi, L.P.B., Micromechanical electrostatic K-band
switches, Proceedings — IEEE MTT-S International Microwave Symposium, 1998.
35. Zhou, S., Sun, X.-Q., and Carr, W.S., A monolithic variable inductor network using
microrelays with combined thermal and electrostatic actuation, Journal of Microme-
chanics and Microenginnering, 9, 45, 1999.
36. Kruglick, E.J.J. and Pister, K.S.J., Lateral MEMS microcontact considerations, Journal
of Microelectromechanical Systems, 8 (3), 264, 1999.
37. Hosaka, H., Kuwano, H., and Yanagisawa, K., Electromagnetic microrelays: concepts
and fundamental characteristics, Sensors and Actuators A, 40, 41, 1994.
38. Kruglick, E.J.J. and Pister, K.S.J., Bistable MEMS relays and contact characterization,
Proceedings — Solid-State Sensor and Actuator Workshop, 333, 1998.
39. Chang, C. and Chang, P., Innovative micromachined microwave switch with very low
insertion loss, Sensors and Actuators A 79, 71, 2000.
40. Schiele, I. et al., Surface-micromachined electrostatic microrelay, Sensors and Actuators
A, 66, 345, 1998.
41. Hyman, D. et al., Surface-micromachined RF MEMs switches on GaAs substrates,
International Journal of RF Microwave Computer Aided Engineering, 9 (4), 348, 1999.
42. Schimkat, J., Contact materials for microrelays, Proceedings — 11th Annual Inter-
national Workshop on Micro Electro Mechanical Systems, 190, 1998.
43. Schimkat, J., Contact measurements providing basic design data for microrelay actu-
ators, Sensors and Actuators, 73, 138, 1999.
44. Pillans, B., RF power handling of capacitive RF MEMS devices, Proceedings — 2002
IEEE MTT-S International Microwave Symposium Digests, 329, 2002.
45. Wibbeler, J., Pfeifer, G., and Hietschold, M., Parasitic charging of dielectric surfaces in
capacitive microelectromechanical systems (MEMS), Sensors and Actuators A, 71, 74,
1998.
46. Ko, Y.J., Park, J.Y., and Bu, J.U., Integrated 3-bit RF MEMS phase shifter with
constant phase shift for active phased array antennas in satellite broadcasting systems,
Proceedings — Transducers ’03, 1788, 2003.
47. Kim, M. et al., A DC-to-40 GHz four-bit RF MEMS true-time delay network, IEEE
Microwave Wireless Component Letters, 11 (2), 56, 2001.
48. Tan, G.-L. et al., Low-loss 2- and 4-bit TTD MEMS phase shifters based on SP4T
switches, IEEE Transactions on Microwave Theory and Techniques, 51 (1), 297, 2003.
49. Hacker, J.B. et al., A Ka-Band 3-bit RF MEMS true-time-delay network, IEEE Trans-
actions on Microwave Theory and Techniques, 51 (1), 305, 2003.
50. Pillans, B. et al., Ka-band RF MEMS phase shifters, IEEE Microwave Guided Wave
Letters, 9 (12), 520, 1999.
51. Pozar, D.M., Microwave Engineering. John Wiley and Sons, New York, 1998.
52. Hayden, J.S. and Rebeiz, G.M., Very low-loss distributed X-band and Ka-band MEMS
phase shifters using metal–air–metal capacitors, IEEE Transactions on Microwave
Theory and Techniques, 51 (1), 309, 2003.
53. Ji, T.S., Vinoy, K.J., and Varadan, V.K., Distributed MEMS phase shifters by micro-
stereolithography on silicon substrates for microwave and millimeter wave applica-
tions, Smart Materials and Structures, 10 (6), 1224, 2001.
54. Liu, Y. et al., K-band 3-bit low-loss distributed MEMS phase shifter, IEEE Microwave
Guided Wave Letters, 10 (10), 415, 2000.
55. Barker, N.S. and Rebeiz, G.M., Optimization of distributed MEMS transmission-line
phasie shifters — U-band and W-band designs, IEEE Transactions on Microwave
Theory and Techniques, 48 (11), 1957, 2000.
© 2006 by Taylor & Francis Group, LLC