Page 211 - MEMS and Microstructures in Aerospace Applications
P. 211

Osiander / MEMS and microstructures in Aerospace applications  DK3181_c009 Final Proof page 202 1.9.2005 12:07pm




                   202                       MEMS and Microstructures in Aerospace Applications


                    5. de Aragon, A.M., et al., Future satellite services, concepts and technologies. European
                       Space Agency Bulletin, 1998 (95): 99–107.
                    6. Maluf, N., An Introduction to Microelectromechanical Systems Engineering. 2000,
                       Artech House, Inc. Boston, MA.
                    7. Gardner, J.W., V.K. Varadan, and O.O. Awadelkarim, Microsensors MEMS and Smart
                       Devices. 2001, John Wiley and Sons, Ltd, New York, NY.
                    8. Honeywell, MEMS thermal switch using mechanically actuated field effect transfer
                       (MAFET) technology, in Preliminary Brochure. 2000.
                    9.  Honeywell,  New  Concept  in  Thermal  Switch  Technology.  2002,  http://www.thermal-
                       switch.com/ts-mafet.shtml
                   10. Gilmore, D., Spacecraft Thermal Control Handbook. 2002, The Aerospace Corporation,
                       El Segundo, CA. pp. 331–352.
                   11. Helvajien, H., S. Janson, and E.Y. Robinson, Big benefits from tiny technologies: micro-
                       nanotechnology applications in future space systems, in Advancement of Photonics for
                       Space, Taylor, E.W., Editor. 1997, SPIE, Bellingham, WA.
                   12. Douglas, D., T. Michalek, and T.D. Swanson, Design of the thermal control system for
                       the space technology 5 microsatellite, in 31st International Conference on Environmental
                       Systems, 2001.
                   13. Osiander, R., et al., Microelectromechanical devices for satellite thermal control. IEEE
                       Sensors Journal Microsensors and Microactuators: Technology and Applications, 2004.
                       4(4) 525–531.
                   14. German, J., As microcircuits heat up, inexpensive Sandia substrate may keep tomorrow’s
                       chip cooler, in Sandia LabNews. 1998.
                   15. Sandia, Sandia Expands Envelope of MEMS Devices, in AW&ST. 2000.
                   16. Karam, R.D., Satellite thermal control for systems engineers, in Progress in Astronaut-
                       ics and Aeronautics, series vol. 1998, American Institute of Aeronautics and Astronaut-
                       ics, Inc., Reston, VA.
                   17. Gad-el-Hak, M., Editor, The MEMS Handbook. 2002, CRC Press LLC, Boca Raton, FL.
                   18. Pettigrew, K., et al., Performance of a MEMS based micro capillary pumped loop for
                       chip-level temperature control, in 14th IEEE International Conference on Micro Electro
                       Mechanical Systems (MEMS 2001), January 21–25 2001. 2001, Institute of Electrical
                       and Electronics Engineers, Inc., Interlaken.
                   19. Birur, G.C., et al., Micro/nano spacecraft thermal control using a MEMS-based pumped
                       liquid cooling system, in SPIE. 2001.
                   20. Nakajima, N., K. Ogawa, and I. Fujimasa, Study on micro engines — miniaturizing
                       Stirling engines for actuators and heatpumps, in Micro Electro Mechanical Systems: An
                       Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, February
                       20–22 1989, 1989, Salt Lake City, UT, USA: IEEE, Piscataway, NJ, USA.
                   21. Moran, M.E., Multidisciplinary Analysis of a Microsystem Device for Thermal Control.
                       2002.
                   22. Moran, M.E., Micro-Scale Avionics Thermal Management. 2001.















                   © 2006 by Taylor & Francis Group, LLC
   206   207   208   209   210   211   212   213   214   215   216