Page 64 -
P. 64
negative. More generally, you can make sure the fraction of examples from each class is as
close as possible to the overall fraction in the original training set.
I would not bother with either of these techniques unless you have already tried plotting
learning curves and concluded that the curves are too noisy to see the underlying trends. If
your training set is large—say over 10,000 examples—and your class distribution is not very
skewed, you probably won’t need these techniques.
Finally, plotting a learning curve may be computationally expensive: For example, you might
have to train ten models with 1,000, then 2,000, all the way up to 10,000 examples. Training
models with small datasets is much faster than training models with large datasets. Thus,
instead of evenly spacing out the training set sizes on a linear scale as above, you might train
models with 1,000, 2,000, 4,000, 6,000, and 10,000 examples. This should still give you a
clear sense of the trends in the learning curves. Of course, this technique is relevant only if
the computational cost of training all the additional models is significant.
Page 64 Machine Learning Yearning-Draft Andrew Ng